一、??? 控制hive任務中的map數:
1.??? 通常情況下,作業會通過input的目錄產生一個或者多個map任務。
主要的決定因素有: input的文件總個數,input的文件大小,集群設置的文件塊大小(目前為128M, 可在hive中通過set dfs.block.size;命令查看到,該參數不能自定義修改);
2.??? 舉例:
a)??? 假設input目錄下有1個文件a,大小為780M,那么hadoop會將該文件a分隔成7個塊(6個128m的塊和1個12m的塊),從而產生7個map數
b)??? 假設input目錄下有3個文件a,b,c,大小分別為10m,20m,130m,那么hadoop會分隔成4個塊(10m,20m,128m,2m),從而產生4個map數
即,如果文件大于塊大小(128m),那么會拆分,如果小于塊大小,則把該文件當成一個塊。
3.??? 是不是map數越多越好?
答案是否定的。如果一個任務有很多小文件(遠遠小于塊大小128m),則每個小文件也會被當做一個塊,用一個map任務來完成,
而一個map任務啟動和初始化的時間遠遠大于邏輯處理的時間,就會造成很大的資源浪費。
而且,同時可執行的map數是受限的。
?
4.??? 是不是保證每個map處理接近128m的文件塊,就高枕無憂了?
答案也是不一定。比如有一個127m的文件,正常會用一個map去完成,但這個文件只有一個或者兩個小字段,卻有幾千萬的記錄,
如果map處理的邏輯比較復雜,用一個map任務去做,肯定也比較耗時。
針對上面的問題3和4,我們需要采取兩種方式來解決:即減少map數和增加map數;
如何合并小文件,減少map數?
??? 假設一個SQL任務:
???????? Select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’;
???????? 該任務的inputdir? /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04
???????? 共有194個文件,其中很多是遠遠小于128m的小文件,總大小9G,正常執行會用194個map任務。
???????? Map總共消耗的計算資源: SLOTS_MILLIS_MAPS= 623,020
???????? 我通過以下方法來在map執行前合并小文件,減少map數:
???????? set mapred.max.split.size=100000000;
??? ??? ??? ??? ??? set mapred.min.split.size.per.node=100000000;
??? ??? ??? ??? ??? set mapred.min.split.size.per.rack=100000000;
??? ??? ??? ??? ??? set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
??? ??? ??? ??? ?再執行上面的語句,用了74個map任務,map消耗的計算資源:SLOTS_MILLIS_MAPS= 333,500
???????? 對于這個簡單SQL任務,執行時間上可能差不多,但節省了一半的計算資源。
???????? 大概解釋一下,100000000表示100M, set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;這個參數表示執行前進行小文件合并,
???????? 前面三個參數確定合并文件塊的大小,大于文件塊大小128m的,按照128m來分隔,小于128m,大于100m的,按照100m來分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),
???????? 進行合并,最終生成了74個塊。
????????
如何適當的增加map數?
???????? 當input的文件都很大,任務邏輯復雜,map執行非常慢的時候,可以考慮增加Map數,來使得每個map處理的數據量減少,從而提高任務的執行效率。
???????? 假設有這樣一個任務:
???????? Select data_desc,
??? ??? ??? ??? count(1),
??? ??? ??? ??? count(distinct id),
??? ??? ??? ??? sum(case when …),
??? ??? ??? ??? sum(case when ...),
??? ??? ??? ??? sum(…)
??????? from a group by data_desc
?????????????????? 如果表a只有一個文件,大小為120M,但包含幾千萬的記錄,如果用1個map去完成這個任務,肯定是比較耗時的,這種情況下,我們要考慮將這一個文件合理的拆分成多個,
?????????????????? 這樣就可以用多個map任務去完成。
?????????????????? set mapred.reduce.tasks=10;
?????????????????? create table a_1 as
?????????????????? select * from a
?????????????????? distribute by rand(123);
??????????????????
?????????????????? 這樣會將a表的記錄,隨機的分散到包含10個文件的a_1表中,再用a_1代替上面sql中的a表,則會用10個map任務去完成。
?????????????????? 每個map任務處理大于12M(幾百萬記錄)的數據,效率肯定會好很多。
???
?? 看上去,貌似這兩種有些矛盾,一個是要合并小文件,一個是要把大文件拆成小文件,這點正是重點需要關注的地方,
?? 根據實際情況,控制map數量需要遵循兩個原則:使大數據量利用合適的map數;使單個map任務處理合適的數據量;
?
二、??? 控制hive任務的reduce數:
1.??? Hive自己如何確定reduce數:
reduce個數的設定極大影響任務執行效率,不指定reduce個數的情況下,Hive會猜測確定一個reduce個數,基于以下兩個設定:
hive.exec.reducers.bytes.per.reducer(每個reduce任務處理的數據量,默認為1000^3=1G)
hive.exec.reducers.max(每個任務最大的reduce數,默認為999)
計算reducer數的公式很簡單N=min(參數2,總輸入數據量/參數1)
即,如果reduce的輸入(map的輸出)總大小不超過1G,那么只會有一個reduce任務;
如:select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
??????????? /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 總大小為9G多,因此這句有10個reduce
2.??? 調整reduce個數方法一:
調整hive.exec.reducers.bytes.per.reducer參數的值;
set hive.exec.reducers.bytes.per.reducer=500000000; (500M)
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 這次有20個reduce
????????
3.??? 調整reduce個數方法二;
set mapred.reduce.tasks = 15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;這次有15個reduce
4.??? reduce個數并不是越多越好;
同map一樣,啟動和初始化reduce也會消耗時間和資源;
另外,有多少個reduce,就會有多少個輸出文件,如果生成了很多個小文件,那么如果這些小文件作為下一個任務的輸入,則也會出現小文件過多的問題;
5.??? 什么情況下只有一個reduce;
很多時候你會發現任務中不管數據量多大,不管你有沒有設置調整reduce個數的參數,任務中一直都只有一個reduce任務;
其實只有一個reduce任務的情況,除了數據量小于hive.exec.reducers.bytes.per.reducer參數值的情況外,還有以下原因:
a)??? 沒有group by的匯總,比如把select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 寫成 select count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04';
這點非常常見,希望大家盡量改寫。
b)??? 用了Order by
c)??? 有笛卡爾積
通常這些情況下,除了找辦法來變通和避免,我暫時沒有什么好的辦法,因為這些操作都是全局的,所以hadoop不得不用一個reduce去完成;
??? 同樣的,在設置reduce個數的時候也需要考慮這兩個原則:使大數據量利用合適的reduce數;使單個reduce任務處理合適的數據量;
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
