亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

HBase二級索引與Join

系統 3788 0

二級索引與索引Join是多數業務系統要求存儲引擎提供的基本特性,RDBMS早已支持,NOSQL陣營也在摸索著符合自身特點的最佳解決方案。
這篇文章會以HBase做為對象來討論如何基于Hbase構建二級索引與實現索引join。文末同時會列出目前已知的包括0.19.3版secondary index,ITHbase, Facebook方案和官方Coprocessor的介紹。

理論目標
在HBase中實現二級索引與索引Join需要考慮三個目標:
1,高性能的范圍檢索。
2,數據的低冗余(存儲所占的數據量)。
3,數據的一致性。

性能與數據冗余,一致性是相互制約的關系。
如果你實現了高性能地范圍檢索,必然需要靠冗余索引數據來提升性能,而數據冗余會導致更新數據時難以實現一致性,特別是分布式場景下。
如果你不要求高效地范圍檢索,那么可以不考慮產生冗余數據,一致性問題也可以間接避免,畢竟share nothing是公認的最簡單有效的解決方案。

理論結合實際,下文會以實例的方式來闡述各個方案是如何選擇偏重點。
這些方案是經過筆者資料查閱和同事的不斷交流后得出的結論,如有錯誤,歡迎指正:

1,按索引建表
每一個索引建立一個表,然后依靠表的row key來實現范圍檢索。row key在HBase中是以B+ tree結構化有序存儲的,所以scan起來會比較效率。
單表以row key存儲索引,column value存儲id值或其他數據 ,這就是Hbase索引表的結構。

如何Join?
多索引(多表)的join場景中,主要有兩種參考方案:

1,按索引的種類掃描各自獨立的單索引表,最后將掃描結果merge。
這個方案的特點是簡單,但是如果多個索引掃描結果數據量比較大的話,merge就會遇到瓶頸。

比如,現在有一張1億的用戶信息表,建有出生地和年齡兩個索引,我想得到一個條件是在杭州出生,年齡為20歲的按用戶id正序排列前10個的用戶列表。
有一種方案是,系統先掃描出生地為杭州的索引,得到一個用戶id結果集,這個集合的規模假設是10萬。
然后掃描年齡,規模是5萬,最后merge這些用戶id,去重,排序得到結果。

這明顯有問題,如何改良?
保證出生地和年齡的結果是排過序的,可以減少merge的數據量?但Hbase是按row key排序,value是不能排序的。
變通一下 – 將用戶id冗余到row key里?OK,這是一種解決方案了,這個方案的圖示如下:

HBase二級索引與Join

merge時提取交集就是所需要的列表,順序是靠索引增加了_id,以字典序保證的。

2, 按索引查詢種類建立組合索引。
在方案1的場景中,想象一下,如果單索引數量多達10個會怎么樣?10個索引,就要merge 10次,性能可想而知。

HBase二級索引與Join
解決這個問題需要參考RDBMS的組合索引實現。
比如出生地和年齡需要同時查詢,此時如果建立一個出生地和年齡的組合索引,查詢時效率會高出merge很多。
當然,這個索引也需要冗余用戶id,目的是讓結果自然有序。結構圖示如下:

HBase二級索引與Join

這個方案的優點是查詢速度非常快,根據查詢條件,只需要到一張表中檢索即可得到結果list。缺點是如果有多個索引,就要建立多個與查詢條件一一對應的組合索引,存儲壓力會增大。

在制定Schema設計方案時,設計人員需要充分考慮場景的特點,結合方案一和二來使用。下面是一個簡單的對比:

單索引 組合索引
檢索性能 優異 優異
存儲 數據不冗余,節省存儲。 數據冗余,存儲比較浪費。
事務性 多個索引保證事務性比較困難。 多個索引保證事務性比較困難。
join 性能較差 性能優異
count,sum,avg,etc 符合條件的結果集全表掃描 符合條件的結果集全表掃描

從上表中可以得知,方案1,2都存在更新時事務性保證比較困難的問題。如果業務系統可以接受最終一致性的話,事務性會稍微好做一些。否則只能借助于復雜的分布式事務,比如JTA,Chubby等技術。
count, sum, avg, max, min等聚合功能,Hbase只能通過硬掃的方式,并且很悲劇,你可能需要做一些hack操作(比如加一個CF,value為null),否則你在掃描時可能需要往客戶端傳回所有數據。
當然你可以在這個場景上做一些優化,比如增加狀態表等,但復雜性帶來的風險會更高。
還有一種終極解決方案就是在業務上只提供上一頁和下一頁,這或許是最簡單有效的方案了。

2,單張表多個列族,索引基于列
Hbase提供了列族Column Family特性。
列索引是將Column Family做為index,多個index值散落到Qualifier,多個column值依據version排列(CF, Qualifer, Version Hbase會保證有序,其中CF和Qualifier正序,Version倒序)。

舉個典型的例子,就是用戶賣了很多商品,這些商品的標題title需要支持like %title%查詢。傳統基于RDMBS就是模糊查詢,基于search engine就是分詞+倒排表。
在HBase中,模糊查詢顯然不滿足我們的要求,接下來只能通過分詞+倒排的方式來存儲。基于CF的倒排表索引結構見下圖:

HBase二級索引與Join

取數據的時候,只需要根據用戶id(row key)定位到一個row,然后根據分詞定位到qualifier,再通過version的有序list,取top n條記錄即可。不過大家可能會發現個問題,version list的總數量是需要scan全version list才能知道的,這里需要業務系統本身做一些改進。

如何join?
實現方式同方案1里的join,多個CF列索引掃描結果后,需要走merge,將多個索引的查詢結果conjunction。

兩個方案的對比似乎變化就是一個表,一個列,但其實這個方案有個最大的好處,就是解決了事務性的問題,因為所有的索引都是跟單個row key綁定的,我們知道單個row的更新,在hbase中是保證原子更新的,這就是這個方案的天然優勢。當你在考慮單索引時,使用基于列的索引會比單表索引有更好的適用性。
而組合索引在以列為存儲粒度的方案里,也同樣可以折中實現。理解這種存儲模式的同學可能已經猜到了,就是基于qualifier。

下表對比了表索引和列索引的優缺點:

列索引 表索引
檢索性能 檢索數據需要走多次scan,第一次scan row key,第二次scan qualifier,第三次scan version。 只需要走一次row key的scan即可。
存儲 在沒有組合索引時,存儲較節省 在沒有組合索引時,存儲較節省
事務性 容易保證 保證事務性比較困難
join 性能較差,只有在建立組合條件Qualifier的時候性能會有所改善 性能較差,只有在建立組合表索引的時候性能會有所改善
額外的問題 1,同一個row里每個qualifier的version是有大小限制的,不能超過Int的最大值。(別以為這個值很大,對于海量數據存儲,上億很平常)
2,version的count總數需要額外做處理獲取。
3,單個row數據超過split大小時,會導致不能compaction或compaction內存吃緊,增加風險。
count,sum,avg,etc 符合條件的結果集全表掃描 符合條件的結果集全表掃描

雖然列索引缺點這么多,但是存儲節省帶來的成本優勢有時還是值得我們去這么做的,何況它還解決了事務性問題,需要用戶自己去權衡。
值得一提的是,Facebook的消息應用服務器就是基于類似的方案來實現的。

3,ITHBase
方案一中的多表,解決了性能問題,同時帶來了存儲冗余和數據一致性問題。這兩個問題中,只要解決其中一項,其實也就滿足了大多數業務場景。
本方案中,著重關注的是數據一致性。ITHbase的全稱是 Indexed Transactional HBase,從名字中就能看出,事務性是它的重要特性。

ITHBase的事務原理簡介
建一張事務表__GLOBAL_TRX_LOG__,每次開啟事務時,在表中記錄狀態。因為是基于Hbase的HTable,事務表同樣會寫WAL用于恢復,不過這個日志格式被ITHbase改造過,它稱之為THLog。
客戶端對多張表更新時,先啟動事務,然后每次PUT,將事務id傳遞給HRegionServer。
ITHbase通過繼承HRegionServer和HReogin類,重寫了大多數操作接口方法,比如put, update, delete, 用于獲取transactionalId和狀態。
當server收到操作和事務id后,先確認服務端收到,標記當前事務為待寫入狀態(需要再發起一次PUT)。當所有表的操作完成后,由客戶端統一做commit寫入,做二階段提交。

HBase二級索引與Join

4,Map-reduce
這個方案沒什么好說的,存儲節省,也不需要建索引表,只需要靠強大的集群計算能力即可導出結果。但一般不適合online業務。

5,Coprocessor協處理器
官方0.92.0新版正在開發中的新功能- Coprocessor ,支持region級別索引。詳見:
https://issues.apache.org/jira/browse/HBASE-2038

協處理器的機制可以理解為,server端添加了一些回調函數。這些回調函數如下:

The Coprocessor interface defines these hooks:

  • preOpen, postOpen: Called before and after the region is reported as online to the master.
  • preFlush, postFlush: Called before and after the memstore is flushed into a new store file.
  • preCompact, postCompact: Called before and after compaction.
  • preSplit, postSplit: Called after the region is split.
  • preClose and postClose: Called before and after the region is reported as closed to the master.

The RegionObserver interface is defines these hooks:

  • preGet, postGet: Called before and after a client makes a Get request.
  • preExists, postExists: Called before and after the client tests for existence using a Get.
  • prePut and postPut: Called before and after the client stores a value.
  • preDelete and postDelete: Called before and after the client deletes a value.
  • preScannerOpen postScannerOpen: Called before and after the client opens a new scanner.
  • preScannerNext, postScannerNext: Called before and after the client asks for the next row on a scanner.
  • preScannerClose, postScannerClose: Called before and after the client closes a scanner.
  • preCheckAndPut, postCheckAndPut: Called before and after the client calls checkAndPut().
  • preCheckAndDelete, postCheckAndDelete: Called before and after the client calls checkAndDelete().

利用這些hooks可以實現region級二級索引,實現count, sum, avg, max, min等聚合操作而不需要返回所有的數據,詳見 https://issues.apache.org/jira/browse/HBASE-1512

二級索引的原理猜測
因為coprocessor的最終方案還未公布,就提供的這些hooks來說,二級索引的實現應該是攔截同一個region的put, get, scan, delete等操作。與此同時在同一個reigon里維護一個索引CF,建立對應的索引表。
基于region的索引表其實有很多局限性,比如全局排序就很難做。

不過我覺得Coprocessor最大的好處在于其提供了server端的完全擴展能力,這對于Hbase來說是一個大的躍進。

如何join?

目前還未發布,不過就了解很難從本質上有所突破。解決方案無非就是merge和composite index,同樣事務性是需要解決的難題之一。

業界已經公開的二級索引方案羅列:

0.19.3版Secondary Index

一直關注HBase的同學,或許知道,早在HBase 0.19.3版發布時,曾經加入過secondary index的功能,Issue詳見 這里
它的使用例子也很簡單: http://blog.rajeevsharma.in/2009/06/secondary-indexes-in-hbase.html

0.19.3版Secondary Index通過將列值以row key方法存儲,提供索引scan。
但HBase早期的需求主要來自Hadoop。事務的復雜性以及當時發現hadoop-core里有個很難解決的與ITHBase兼容的問題,致使官方在0.20.0版將其核心代碼移出了hbase-core,改為contrib第三方擴展,Issue詳見 這里

Transactional tableindexed- ITHBase

這個方案就是在0.19.3版被官方剝離出核心的第三方擴展,它的方案上面已經介紹過了。目前支持最新的Hbase 0.90。
是否具備工業強度的穩定性是用戶選擇它的主要障礙。

https://github.com/hbase-trx/hbase-transactional-tableindexed

Facebook方案

facebook采用的是單表多列索引的解決方案,上面已經提到過了。很完美地解決了數據一致性問題,這主要跟他們的使用場景有關。

HBase二級索引與Join
感興趣的同學可以看下這篇blog,本文不作詳述:

blog.huihoo.com/?p=688

HBase官方方案 0.92.0 版開發中 – Coprocessor協處理器

還未發布,不過hbase官方blog有篇介紹: http://hbaseblog.com/2010/11/30/hbase-coprocessors

Lily Hbase indexing Library

這是一個索引構建,查詢,管理的框架。結構上,就是通過一張indexmeta表管理多張indexdata索引表。
特點是,有一套非常完善的針對int, string, utf-8, decimal等類型的row key排序機制。這個機制在這篇博文中有詳細介紹:

http://brunodumon.wordpress.com/2010/02/17/building-indexes-using-hbase-mapping-strings-numbers-and-dates-onto-bytes/

此外,框架針對join場景(原理=merge),提供了封裝好的conjunction和disjunction工具類。
針對索引構建場景,Hbase indexing library也提供了很方便的接口。

IHbase

IHBase非常類似ITHBase。
IHBase同樣從HBase源碼級別進行了擴展了,重新定義和實現了一些Server,Client端處理邏輯,所以,它是具備強侵入性的。
不幸的是,這個工具在fix完Hbase 0.20.5版兼容bug以后再也沒更新。是否支持0.90以上版本,筆者還未嘗試。
IHBase與ITHBase的一個對比(仁者見仁)
Feature ITHBase IHBase Comment
global ordering yes no IHBase has an index for each region. The flip side of not having global ordering is compatibility with the good old HRegion: results are coming back in row order (and not value order as in ITHBase)
Full table scan? no no THbase does a partial scan on the index table. ITHBase supports specifying start/end rows to limit the number of scanned regions
Multiple Index Usage no yes IHBase can take advantage of multiple indexes in the same scan. IHBase IdxScan object accepts an Expression which allows intersection/unison of several indexed column criteria
Extra disk storage yes no IHBase indexes are created when the region starts/flushes and do not require any extra storage
Extra RAM yes yes IHBase indexes are in memory and hence increase the memory overhead. THBbase indexes increase the number of regions each region server has to support thus costing memory too
Parallel scanning support no yes In ITHBase the index table needs to be consulted and then GETs are issued for each matching row. The behavior of IHBase (as perceived by the client) is no different than a regular scan and hence supports parallel scanning seamlessly. parallel GET can be implemented to speedup THbase scans
原理簡介
在Memstore滿了以后刷磁盤時,IHBase會進行攔截請求并為這個memstore的數據構建索引。索引另一個CF的方式存儲在表內。不過只支持region級別(類似coprocessor)
scan的時候,IHBase會結合索引列中的標記,來加速scan。

歡迎訪問我的 個人博客 ,獲取其他相關資料!

HBase二級索引與Join


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 日本中文字幕不卡免费视频 | 精品欧美一区二区三区精品久久 | aⅴ免费在线观看 | 神马我不卡在线观看 | 2019精品国产品免费观看 | 欧美一级毛片图 | 国产成人在线观看免费网站 | 久久这里有精品 | 中文无码久久精品 | 一区二区三区国产精品 | 玖玖在线资源站 | 大色香蕉色视频大全 | 99久久99热精品免费观看国产 | 欧美操操 | 久久久91精品国产一区二区三区 | 九九热精品视频在线观看 | 国产91嫩草精品 | 精品一区二区三区视频在线观看 | 九九热在线视频 | 中文字幕在线观看不卡 | 国产精品9999久久久久仙踪林 | 久久久7777888精品 | 免费精品美女久久久久久久久久 | 久久夜色tv网站免费影院 | 欧美视频在线观看免费 | 激情综合色综合久久综合 | 亚洲在线久久 | 97伦理片| 伊人网2021 | 欧美成一级 | 一级黄色录像毛片 | 欧美综合区 | 人人澡 人人澡 人人看欧美 | 日本不卡在线视频高清免费 | 国产在线麻豆一区二区 | 亚洲热久久| 国产欧美另类久久精品91 | 一区二区三区欧美在线 | 天海翼一区 在线播放 | 免费看在线爱爱小视频 | 久久天天躁狠狠躁夜夜爽 |