?
%控制感知機的學習過程,學習AND運算
P=[0 1 0 1 1;1 1 1 0 0];
T=[0 1 0 0 0];
net = newp([0 1;0 1],1);
net=init(net);
y=sim(net,P);
e=T-y;
while (mae(e)>0.0015)
?? dw=learnp(w,P,[],[],[],[],e,[],[],[],[],[])
?? db=learnp(b,ones(1,5),[],[],[],[],e,[],[],[],[],[])
?? %每次學習完后,會返回需要的調整權值矩陣和閾值矩陣
?? w=w+dw
?? b=b+db
?? net.iw{1,1}=w
?? net.b{1}=b??
?? y=sim(net,P);
?? e=T-y
end
?
?
learnp用于感知器神經網絡權值和閾值的學習,學習規則是調整網絡的權值和閾值,使網絡平均絕對誤差性能最小,以便實現輸入向量的分類
help learnp
?LEARNP Perceptron weight/bias learning function.
?
?? Syntax
??
???? [dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
???? [db,LS] = learnp(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
???? info = learnp(code)
?
?? Description
?
???? LEARNP is the perceptron weight/bias learning function.
?
???? LEARNP(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
?????? W? - SxR weight matrix (or b, an Sx1 bias vector).
?????? P? - RxQ input vectors (or ones(1,Q)).
?????? Z? - SxQ weighted input vectors.
?????? N? - SxQ net input vectors.
?????? A? - SxQ output vectors.
?????? T? - SxQ layer target vectors.
?????? E? - SxQ layer error vectors.
?????? gW - SxR gradient with respect to performance.
?????? gA - SxQ output gradient with respect to performance.
?????? D? - SxS neuron distances.
?????? LP - Learning parameters, none, LP = [].
?????? LS - Learning state, initially should be = [].
???? and returns,
?????? dW - SxR weight (or bias) change matrix.
?????? LS - New learning state.
?
???? LEARNP(CODE) returns useful information for each CODE string:
?????? 'pnames'??? - Returns names of learning parameters.
?????? 'pdefaults' - Returns default learning parameters.
?????? 'needg'???? - Returns 1 if this function uses gW or gA.
?
?? Examples
?
???? Here we define a random input P and error E to a layer
???? with a 2-element input and 3 neurons.
?
?????? p = rand(2,1);
?????? e = rand(3,1);
?
???? Since LEARNP only needs these values to calculate a weight
???? change (see Algorithm below), we will use them to do so.
?
?????? dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])
?
?? Network Use
?
???? You can create a standard network that uses LEARNP with NEWP.
?
???? To prepare the weights and the bias of layer i of a custom network
???? to learn with LEARNP:
???? 1) Set NET.trainFcn to 'trainb'.
??????? (NET.trainParam will automatically become TRAINB's default parameters.)
???? 2) Set NET.adaptFcn to 'trains'.
??????? (NET.adaptParam will automatically become TRAINS's default parameters.)
???? 3) Set each NET.inputWeights{i,j}.learnFcn to 'learnp'.
??????? Set each NET.layerWeights{i,j}.learnFcn to 'learnp'.
??????? Set NET.biases{i}.learnFcn to 'learnp'.
??????? (Each weight and bias learning parameter property will automatically
??????? become the empty matrix since LEARNP has no learning parameters.)
?
???? To train the network (or enable it to adapt):
???? 1) Set NET.trainParam (NET.adaptParam) properties to desired values.
???? 2) Call TRAIN (ADAPT).
?
???? See NEWP for adaption and training examples.
?
?? Algorithm
?
???? LEARNP calculates the weight change dW for a given neuron from the
???? neuron's input P and error E according to the perceptron learning rule:
?
?????? dw =? 0,? if e =? 0
????????? =? p', if e =? 1
????????? = -p', if e = -1
?
???? This can be summarized as:
?
?????? dw = e*p'
?
?
?
?
?
?
?
?
?
?
>> plotpv(P,T)
>> plotpc(net.iw{1,1},net.b{1})
?
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
