亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

Python實現蒙特卡洛模擬

系統 2062 0

蒙特卡洛模擬是一種統計學方法,基本原理是通過大量的隨機樣本對系統進行模擬,從而求得所需計算的參量。使用蒙特卡洛模擬方法的基本要素包括:構建或描述概率模型、從已知概率分布采樣、建立各種估計量。

使用“簡書-朱煥”的"定量分析項目總持續時間"例子:比如說我們現在有個項目,該項目共有三個WBS要素分別是設計、建造和測試,為了簡單起見我們假設這三個WBS要素的預估的工期概率分布都呈標準正態分布,而且三者之間都是完成到開始的邏輯關系,這樣整個項目工期就是這三個WBS要素工期之和。例子的詳細情況參見[1]。

使用蒙特卡洛模擬方法,首先構建概率模型(這個應該是解決問題的關鍵),這個例子中假設了設計、建造和測試三個要素呈正態分布;然后根據正態分布對這三個要素進行采樣;估計量就是工期時間,工期時間是三個要素之和,根據采樣結果計算工期的模擬值,并計算工期模擬值的出現頻率(概率),最后根據出現頻率計算累積概率。下面是Python代碼:

            
              import numpy as np
import matplotlib.pyplot as plt
import math

# 參數
mu = [14, 23, 22]
sigma = [2, 3, 4]
tips = ['design', 'build', 'test']

figureIndex = 0
fig = plt.figure(figureIndex, figsize=(10,8))
# 顯示分布圖
color = ['r', 'g', 'b']
ax = fig.add_subplot(111)
#ax = plt.subplot(1,1,1)

for i in range(3):
    # 參考https://www.jb51.net/article/146073.htm.[2]
    x = np.linspace(mu[i] - 3 * sigma[i], mu[i] + 3 * sigma[i], 100)
    y_sig = np.exp(-(x - mu[i]) ** 2 / (2 * sigma[i] ** 2)) / (math.sqrt(2 * math.pi) * sigma[i])
    ax.plot(x, y_sig, color[i]+'-', linewidth=2, alpha=0.6, label=tips[i])
    #
ax.legend(loc='best', frameon=False)
ax.set_xlabel('# of days')
ax.set_ylabel('probability')
plt.grid(True)

# 蒙特卡洛采樣
# 三個WBS要素
size = 10000
samples = [np.random.normal(mu[i], sigma[i], size) for i in range(3)]
# 計算工期
data = np.zeros(len(samples[1]))
for i in range(len(samples[1])):
    for j in range(3):
        data[i] += samples[j][i]
    data[i] = int(data[i])

# 統計一個列表中每個元素出現的次數
# 參考https://blog.csdn.net/qq_42467563/article/details/86182266.[3]
def count(lis):
    lis=np.array(lis)
    key=np.unique(lis)
    x = []
    y = []
    for k in key:
        mask =(lis == k)
        list_new=lis[mask]
        v=list_new.size
        x.append(k)
        y.append(v)
    return x,y
#

# 計算工期出現頻率與累積概率
a,b = count(data)
pdf = [x/size for x in b]

cdf = np.zeros(len(a))
for i in range(len(a)):
    if i > 0:
        cdf[i] += cdf[i-1]
    cdf[i] += b[i]

cdf = cdf/size

figureIndex += 1
fig = plt.figure(figureIndex, figsize=(10,8))
ax = fig.add_subplot(211)
ax.bar(a, height=pdf, color = 'blue',edgecolor = 'white', label='MC PDF')
ax.plot(a, pdf)
ax.legend(loc='best', frameon=False)
ax.set_xlabel('# of days for project')
ax.set_ylabel('probability')
ax.set_title('Monte Carlo Simulation')

ax = fig.add_subplot(212)
ax.plot(a, cdf, 'r-', marker='o', mfc='b', ms=4, lw=2, alpha=0.6, label='MC CDF')
ax.legend(loc='best', frameon=False)
ax.set_xlabel('# of days for project')
ax.set_ylabel('probability')
ax.grid(True)

plt.show()
            
          

模擬結果:

Python實現蒙特卡洛模擬_第1張圖片

參考資料:

[1] 朱煥, “蒙特卡洛模擬(Monte Carlo Simulation)淺析”, https://www.jianshu.com/p/cb44f4b457c3.

[2] 腳本之家, “Python使用numpy產生正態分布隨機數的向量或矩陣操作示例”, https://www.jb51.net/article/146073.htm.

[3] 三尺秋水一點飛鴻, “Python統計一個列表中每個元素出現的次數。四種方法,總有一款適合你”, https://blog.csdn.net/qq_42467563/article/details/86182266.


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 亚洲一区二区欧美日韩 | 高清在线不卡 | 精品小视频在线 | 99视频精品全国在线观看 | 在线观看日本中文字幕 | 看全色黄大色黄大片色责看的 | 四虎b7j77com| 国产aⅴ精品一区二区三区久久 | 国产成人在线小视频 | 日韩精品中文字幕一区三区 | 国产成人爱片免费观看视频 | 日日操美女 | 亚洲狠狠婷婷综合久久久图片 | 香蕉黄色网 | 在线综合视频 | 久久草草| 天天综合日日噜噜噜 | 亚洲春色综合另类网蜜桃 | 老司机午夜精品视频在线观看免费 | 亚洲欧美极品 | h在线观看免费 | 久久精品国产大片免费观看 | 欧美日韩视频一区三区二区 | 色国产在线视频一区 | 亚洲免费在线 | 草久在线 | 国产精品视频免费 | 97视频观看 | 男人天堂2021 | 久久99精品国产自在现线小黄鸭 | 久久精品小视频 | 成人国产在线视频 | 在线观看视频中文字幕 | 免费特黄一级欧美大片 | 夜鲁夜鲁夜鲁在线观看福利 | 久久亚洲私人国产精品 | 国内自拍网红在线综合 | 婷婷综合在线观看丁香 | 亚洲影院中文字幕 | 国产欧美日本亚洲精品五区 | 久久精品国产国产 |