import pandas as pd
from sklearn import datasets
import matplotlib.pyplot as plt
import matplotlib.cm
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
dig = datasets.load_digits() #讀入sklearn內置數據
print(dig.keys())
X = dig.data
y = dig.target
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
KNN = KNeighborsClassifier(n_neighbors=3)
KNN.fit(X_train,y_train)
y_predict = KNN.predict(X_test)
accuracy = sum(y_predict == y_test)/len(y_test)
print("預測結果準確度:",accuracy)
from sklearn.metrics import accuracy_score
print("sklearn自帶精度accuracy_score:",accuracy_score(y_test,y_predict))
some = X[555]
print(y[555])
some1 = some.reshape(8,8)
plt.imshow(some1,cmap = matplotlib.cm.binary)
plt.show()
?
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
