亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

樸素貝葉斯法的參數估計——極大似然估計及其Python實現

系統 2006 0

統計學習方法——樸素貝葉斯法原理

1. 樸素貝葉斯法的極大似然估計

樸素貝葉斯法的參數估計——極大似然估計及其Python實現_第1張圖片

2. 樸素貝葉斯極大似然學習及分類算法

算法過程:
樸素貝葉斯法的參數估計——極大似然估計及其Python實現_第2張圖片

2. Python實現

            
              
                def
              
              
                priorProbability
              
              
                (
              
              labelList
              
                )
              
              
                :
              
              
                # 計算先驗概率
              
              
    labelSet 
              
                =
              
              
                set
              
              
                (
              
              labelList
              
                )
              
              
                # 得到類別的值
              
              
    labelCountDict 
              
                =
              
              
                {
              
              
                }
              
              
                # 利用一個字典來存儲訓練集中各個類別的實例數
              
              
                for
              
               label 
              
                in
              
               labelList
              
                :
              
              
                if
              
               label 
              
                not
              
              
                in
              
               labelCountDict
              
                :
              
              
            labelCountDict
              
                [
              
              label
              
                ]
              
              
                =
              
              
                0
              
              
        labelCountDict
              
                [
              
              label
              
                ]
              
              
                +=
              
              
                1
              
              
    priorProbabilityDict 
              
                =
              
              
                {
              
              
                }
              
              
                for
              
               label 
              
                in
              
               labelSet
              
                :
              
              
                # 計算不同的類別對應的先驗概率
              
              
        priorProbabilityDict
              
                [
              
              label
              
                ]
              
              
                =
              
               labelCountDict
              
                [
              
              label
              
                ]
              
              
                /
              
              
                len
              
              
                (
              
              labelList
              
                )
              
              
                return
              
               priorProbabilityDict

              
                def
              
              
                conditionProbability
              
              
                (
              
              dataSet
              
                ,
              
              labelList
              
                )
              
              
                :
              
              
                # 計算條件概率
              
              
    dimNum 
              
                =
              
              
                len
              
              
                (
              
              dataSet
              
                [
              
              
                0
              
              
                ]
              
              
                )
              
              
                # 得到特征數
              
              
    characterVal 
              
                =
              
              
                [
              
              
                ]
              
              
                # 利用一個數組來存儲訓練數據集中不同特征的不同特征值。
              
              
                # 每一個不同特征的特征值都要需要另一個數組來存儲,這樣 characterVal實際上是一個二維數組
              
              
                for
              
               i 
              
                in
              
              
                range
              
              
                (
              
              dimNum
              
                )
              
              
                :
              
              
        temp 
              
                =
              
              
                [
              
              
                ]
              
              
                for
              
               j 
              
                in
              
              
                range
              
              
                (
              
              
                len
              
              
                (
              
              dataSet
              
                )
              
              
                )
              
              
                :
              
              
                if
              
               dataSet
              
                [
              
              j
              
                ]
              
              
                [
              
              i
              
                ]
              
              
                not
              
              
                in
              
               temp
              
                :
              
              
                temp
              
                .
              
              append
              
                (
              
              dataSet
              
                [
              
              j
              
                ]
              
              
                [
              
              i
              
                ]
              
              
                )
              
              
        characterVal
              
                .
              
              append
              
                (
              
              temp
              
                )
              
              
    probability 
              
                =
              
              
                [
              
              
                ]
              
              
                # 數組來存儲最后的所有的條件概率
              
              
    labelSet 
              
                =
              
              
                list
              
              
                (
              
              
                set
              
              
                (
              
              labelList
              
                )
              
              
                )
              
              
                for
              
               dim 
              
                in
              
              
                range
              
              
                (
              
              dimNum
              
                )
              
              
                :
              
              
                # 學習條件概率,需要計算K*S1*...*Sj個概率
              
              
        tempMemories 
              
                =
              
              
                {
              
              
                }
              
              
                # 對于每一個特征,利用一個字點來存儲這個特征所有的取值對應的條件概率
              
              
                for
              
               val 
              
                in
              
               characterVal
              
                [
              
              dim
              
                ]
              
              
                :
              
              
                for
              
               label 
              
                in
              
               labelSet
              
                :
              
              
                labelCount 
              
                =
              
              
                0
              
              
                # 記錄每一類的個數
              
              
                mixCount 
              
                =
              
              
                0
              
              
                # 記錄當前特征值為這個數,且類別為這個類別的實例個數
              
              
                for
              
               i 
              
                in
              
              
                range
              
              
                (
              
              
                len
              
              
                (
              
              labelList
              
                )
              
              
                )
              
              
                :
              
              
                if
              
               labelList
              
                [
              
              i
              
                ]
              
              
                ==
              
               label
              
                :
              
              
                        labelCount 
              
                +=
              
              
                1
              
              
                if
              
               dataSet
              
                [
              
              i
              
                ]
              
              
                [
              
              dim
              
                ]
              
              
                ==
              
               val
              
                :
              
              
                            mixCount 
              
                +=
              
              
                1
              
              
                tempMemories
              
                [
              
              
                str
              
              
                (
              
              val
              
                )
              
              
                +
              
              
                "|"
              
              
                +
              
              
                str
              
              
                (
              
              label
              
                )
              
              
                ]
              
              
                =
              
               mixCount
              
                /
              
              labelCount
                
              
                # key表示哪一個特征值和類別,鍵表示對應的條件概率
              
              
        probability
              
                .
              
              append
              
                (
              
              tempMemories
              
                )
              
              
                # 計算完一個特征,填充一個
              
              
                return
              
               probability  
              
                # 返回條件概率
              
              
                def
              
              
                naiveBayes
              
              
                (
              
              x
              
                ,
              
              dataSet
              
                ,
              
              labelList
              
                )
              
              
                :
              
              
                # 貝葉斯分類
              
              
    priorProbabilityDict 
              
                =
              
               priorProbability
              
                (
              
              labelList
              
                )
              
              
    probability 
              
                =
              
               conditionProbability
              
                (
              
              dataSet
              
                ,
              
              labelList
              
                )
              
              
    bayesProbability 
              
                =
              
              
                {
              
              
                }
              
              
                # 計算所有類所對應的后驗概率
              
              
    labelSet 
              
                =
              
              
                list
              
              
                (
              
              
                set
              
              
                (
              
              labelList
              
                )
              
              
                )
              
              
                for
              
               label 
              
                in
              
               labelSet
              
                :
              
              
        tempProb 
              
                =
              
               priorProbabilityDict
              
                [
              
              label
              
                ]
              
              
                for
              
               dim 
              
                in
              
              
                range
              
              
                (
              
              
                len
              
              
                (
              
              x
              
                )
              
              
                )
              
              
                :
              
              
            tempProb 
              
                *=
              
               probability
              
                [
              
              dim
              
                ]
              
              
                [
              
              
                str
              
              
                (
              
              x
              
                [
              
              dim
              
                ]
              
              
                )
              
              
                +
              
              
                "|"
              
              
                +
              
              
                str
              
              
                (
              
              label
              
                )
              
              
                ]
              
              
        bayesProbability
              
                [
              
              label
              
                ]
              
              
                =
              
               tempProb
    result 
              
                =
              
              
                sorted
              
              
                (
              
              bayesProbability
              
                .
              
              items
              
                (
              
              
                )
              
              
                ,
              
              key
              
                =
              
              
                lambda
              
               x
              
                :
              
              x
              
                [
              
              
                1
              
              
                ]
              
              
                ,
              
              reverse
              
                =
              
              
                True
              
              
                )
              
              
                # 排序
              
              
                return
              
               result
              
                [
              
              
                0
              
              
                ]
              
              
                [
              
              
                0
              
              
                ]
              
              
                # 返回后驗概率最大的類
              
              
dataSet 
              
                =
              
              
                (
              
              
                [
              
              
                [
              
              
                1
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                1
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                1
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                1
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                1
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ]
              
              
                )
              
              
labelList 
              
                =
              
              
                [
              
              
                -
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ]
              
              
                print
              
              
                (
              
              naiveBayes
              
                (
              
              
                [
              
              
                2
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              dataSet
              
                ,
              
              labelList
              
                )
              
              
                )
              
              
                ## 返回結果為-1,即歸為-1類。
              
            
          
這個實現過程和書上的不太一樣,這里每一個特征的取值范圍和類的取值范圍是根據數據集中的數來進行確定,即每一個特征的取值范圍不考慮那些沒有出現在訓練數據集中的特征值。而書上的算法,每一個特征的取值范圍是事先給出的,在這個取值范圍中的特征值,可能會出現在訓練數據集中,可能不出現。但在估計先驗概率和條件概率的時候,過程是一樣的。這是這個實現過程的一個不足。

更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 久热最新视频 | 黄色网欧美 | 久久久久久久免费 | 老师粗又长好猛好爽视频 | 青青青线在线观看 | 久久精品国产一区二区三区日韩 | 99久久99这里只有免费的精品 | xxxx日本在线播放免费不卡 | 日韩看片 | 欧美一级毛片日韩一级 | 久久久最新精品 | 久久久久国产精品美女毛片 | 中文乱码在线观看 | 日本视频一区二区三区 | xxxwww欧美| 久久久这里有精品 | 久久香蕉国产线看观看网站 | 精品国产精品久久一区免费式 | 人做人爱视频欧美在线观看 | 四虎影院在线网址 | 久久噜噜噜久久亚洲va久 | 四虎影院永久在线观看 | 91久久综合九色综合欧美98 | 极品福利| 色综合视频一区二区三区 | 成人欧美在线视频 | 99久久综合精品免费 | 国产亚洲片 | 射综合网 | 亚洲欧美日韩成人一区在线 | 神马97| 97精品视频在线 | 亚洲综合一区二区三区四区 | 一区二区三区在线免费观看视频 | 国产欧美亚洲精品 | 91在线| 久久精品视频在线 | 中文字幕在线观看免费 | 一级a毛片免费 | 亚洲精品国产综合99久久一区 | 国产真实偷人视频在线播放 |