?計(jì)算兩個(gè)信號(hào)的交叉譜密度
結(jié)果展示:
完整代碼:
import numpy as np import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(2, 1) # make a little extra space between the subplots fig.subplots_adjust(hspace=0.5) dt = 0.01 t = np.arange(0, 30, dt) # Fixing random state for reproducibility np.random.seed(19680801) nse1 = np.random.randn(len(t)) # white noise 1 nse2 = np.random.randn(len(t)) # white noise 2 r = np.exp(-t / 0.05) cnse1 = np.convolve(nse1, r, mode='same') * dt # colored noise 1 cnse2 = np.convolve(nse2, r, mode='same') * dt # colored noise 2 # two signals with a coherent part and a random part s1 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse1 s2 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse2 ax1.plot(t, s1, t, s2) ax1.set_xlim(0, 5) ax1.set_xlabel('time') ax1.set_ylabel('s1 and s2') ax1.grid(True) cxy, f = ax2.csd(s1, s2, 256, 1. / dt) ax2.set_ylabel('CSD (db)') plt.show()
總結(jié)
以上就是本文關(guān)于Python+matplotlib實(shí)現(xiàn)計(jì)算兩個(gè)信號(hào)的交叉譜密度實(shí)例的全部內(nèi)容,希望對(duì)大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站其他相關(guān)專題,如有不足之處,歡迎留言指出。感謝朋友們對(duì)本站的支持!
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號(hào)聯(lián)系: 360901061
您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長非常感激您!手機(jī)微信長按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對(duì)您有幫助就好】元
