亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

K近鄰算法的python實現

系統 1534 0

前言

在K近鄰的原始算法中,沒有對K近鄰的方法進行優化,還是遍歷訓練集,找到與輸入實例最近的K個訓練實例,統計他們的類別,以此作為輸入實例類別的判斷。具體的模型理論見:統計學習方法——K近鄰法(原始方法)

1. K近鄰算法的實現

在算法實現的過程中,利用的是歐氏距離進行點與點之間的距離度量。在進行數據運算的時候,沒有利用numpy,而是利用Python中自帶的list來進行數據的計算。

            
              
                def
              
              
                knn
              
              
                (
              
              x
              
                ,
              
              dataSet
              
                ,
              
              labels
              
                ,
              
              k
              
                )
              
              
                :
              
              
    distanceMemories 
              
                =
              
              
                {
              
              
                }
              
              
                # 利用字典來記錄距離
              
              
                for
              
               i 
              
                in
              
              
                range
              
              
                (
              
              
                len
              
              
                (
              
              dataSet
              
                )
              
              
                )
              
              
                :
              
              
        distance 
              
                =
              
               euDis
              
                (
              
              x
              
                ,
              
              dataSet
              
                [
              
              i
              
                ]
              
              
                )
              
              
        distanceMemories
              
                [
              
              i
              
                ]
              
              
                =
              
               distance
    sortResult 
              
                =
              
              
                sorted
              
              
                (
              
              distanceMemories
              
                .
              
              items
              
                (
              
              
                )
              
              
                ,
              
              key 
              
                =
              
              
                lambda
              
                x
              
                :
              
              x
              
                [
              
              
                1
              
              
                ]
              
              
                )
              
              
    distance_min_k 
              
                =
              
               sortResult
              
                [
              
              
                :
              
              k
              
                ]
              
              
    classCount 
              
                =
              
              
                {
              
              
                }
              
              
                # 用來記錄前k個中各個類出現的次數
              
              
                for
              
               i 
              
                in
              
              
                range
              
              
                (
              
              
                len
              
              
                (
              
              distance_min_k
              
                )
              
              
                )
              
              
                :
              
              
                if
              
               labels
              
                [
              
              distance_min_k
              
                [
              
              i
              
                ]
              
              
                [
              
              
                0
              
              
                ]
              
              
                ]
              
              
                not
              
              
                in
              
               classCount
              
                :
              
              
            classCount
              
                [
              
              labels
              
                [
              
              distance_min_k
              
                [
              
              i
              
                ]
              
              
                [
              
              
                0
              
              
                ]
              
              
                ]
              
              
                ]
              
              
                =
              
              
                0
              
              
        classCount
              
                [
              
              labels
              
                [
              
              distance_min_k
              
                [
              
              i
              
                ]
              
              
                [
              
              
                0
              
              
                ]
              
              
                ]
              
              
                ]
              
              
                +=
              
              
                1
              
              
    result 
              
                =
              
              
                sorted
              
              
                (
              
              classCount
              
                .
              
              items
              
                (
              
              
                )
              
              
                ,
              
              key 
              
                =
              
              
                lambda
              
               x
              
                :
              
              x
              
                [
              
              
                1
              
              
                ]
              
              
                ,
              
              reverse 
              
                =
              
              
                True
              
              
                )
              
              
                # 對統計結果,按照字典中的各個值,進行降序排序
              
              
                return
              
               result
              
                [
              
              
                0
              
              
                ]
              
              
                [
              
              
                0
              
              
                ]
              
              
                def
              
              
                euDis
              
              
                (
              
              x
              
                ,
              
              y
              
                )
              
              
                :
              
              
                # 歐式距離的計算
              
              
    dim 
              
                =
              
              
                len
              
              
                (
              
              x
              
                )
              
              
    temp 
              
                =
              
              
                0
              
              
                for
              
               i 
              
                in
              
              
                range
              
              
                (
              
              dim
              
                )
              
              
                :
              
              
        temp 
              
                +=
              
              
                (
              
              x
              
                [
              
              i
              
                ]
              
              
                -
              
               y
              
                [
              
              i
              
                ]
              
              
                )
              
              
                **
              
              
                2
              
              
                return
              
               temp 
              
                **
              
              
                0.5
              
              

dataSet 
              
                =
              
              
                [
              
              
                [
              
              
                3
              
              
                ,
              
              
                104
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                100
              
              
                ]
              
              
                ,
              
              
                [
              
              
                1
              
              
                ,
              
              
                81
              
              
                ]
              
              
                ,
              
              
                [
              
              
                101
              
              
                ,
              
              
                10
              
              
                ]
              
              
                ,
              
              
                [
              
              
                99
              
              
                ,
              
              
                5
              
              
                ]
              
              
                ,
              
              
                [
              
              
                98
              
              
                ,
              
              
                2
              
              
                ]
              
              
                ]
              
              
                # 這是機器學習實戰一書上的小例子
              
              
labels 
              
                =
              
              
                [
              
              
                "愛情片"
              
              
                ,
              
              
                "愛情片"
              
              
                ,
              
              
                "愛情片"
              
              
                ,
              
              
                "動作片"
              
              
                ,
              
              
                "動作片"
              
              
                ,
              
              
                "動作片"
              
              
                ]
              
              
                print
              
              
                (
              
              knn
              
                (
              
              
                [
              
              
                18
              
              
                ,
              
              
                90
              
              
                ]
              
              
                ,
              
              dataSet
              
                ,
              
              labels
              
                ,
              
              
                3
              
              
                )
              
              
                )
              
              
                # 輸出結果:愛情片
              
            
          

更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 亚洲图片欧美日韩 | 在线播放国产一区二区三区 | 欧美巨大xxxx做受孕妇视频 | 日本道在线视频 | 天天干天天做天天操 | 免费 高清 日本1在线观看 | 四虎影视永久地址www成人污 | 久久精品国产福利国产秒 | 依人综合网 | 又粗又大的机巴好爽欧美 | 久久爱噜噜噜噜久久久网 | 欧美在线香蕉在线现视频 | 免费费看的欧亚很色大片 | 国产精品综合视频 | 国产精品香蕉成人网在线观看 | 国产伦久视频免费观看 视频 | 欧洲在线免费视频 | 香蕉视频在线视频 | 成人欧美精品一区二区不卡 | 久久精品久久久久 | 成人性色生活片全黄 | 日本免费毛片在线高清看 | 一 级 黄 色 片生活片 | 日本一区二区三区欧美在线观看 | 国产亚洲一区二区三区啪 | 免费观看一级毛片 | 一级免费毛片 | 亚洲一区小说区中文字幕 | 四虎影院观看视频在线观看 | 精品久久久久久中文字幕欧美 | 97在线免费看视频 | www欧美视频| 久久免费观看国产99精品 | 亚洲综合在线成人一区 | a一级毛片免费播放 | 国产精品视频一区国模私拍 | 国产自产拍精品视频免费看 | 97在线观看播放 | 国产激情影院 | 国产福利在线观看第二区 | 精品久久久久久久九九九精品 |