亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

Stanford University - Introduction to Comput

系統 2177 0

Stanford University - Introduction to Computational Advertising

MS&E 239: Introduction to Computational Advertising
September-December, 2011 - Stanford University, California



Contents


Course Information

Overview
Computational advertising is an emerging new scientific sub-discipline, at the intersection of large scale search and text analysis, information retrieval, statistical modeling, machine learning, classification, optimization, and microeconomics. The central problem of computational advertising is to find the "best match" between a given user in a given context and a suitable advertisement. The context could be a user entering a query in a search engine ("sponsored search"), a user reading a web page ("content match" and "display ads"), a user watching a movie on a portable device, and so on. The information about the user can vary from scarily detailed to practically nil. The number of potential advertisements might be in the billions. Thus, depending on the definition of "best match" this problem leads to a variety of massive optimization and search problems, with complicated constraints, and challenging data representation and access problems. The solution to these problems provides the scientific and technical foundations for the $20 billion online advertising industry.

This course aims to provide a good introduction to the main algorithmic issues and solutions in computational advertising, as currently applied to building platforms for various online advertising formats. At the same time we intend to briefly survey the economics and marketplace aspects of the industry, as well as some of the research frontiers. The intended audience are students interested in the practical and theoretical aspects of web advertising.

The tentative list of topics include: The online advertising landscape; Marketplace and economics; Data representation and optimization challenges in online advertising; The information retrieval approach to textual ads selection; Sponsored search; Context match; Display advertising; Behavioral targeting; Emerging formats and technologies: mobile, aps, games, etc.

There are no formal prerequisites but some familiarity with the basic concepts of probability, economics, machine learning, and optimization is expected and good web skills are required. The course will likely include a "real life" project where students will have a budget to advertise for a certain business and will be required to analyze and justify their choices.

Teaching Staff: The best way to reach us is via email at: msande239-aut1112-staff@lists.stanford.edu
Instructors TA
  • Krishnamurthy Iyer (kriyer AT stanford)
    Office hours: Tuesday, 6:00 -7:30pm, Huang 304

Meeting Time/Location
Fri 10 am-12:50 pm, Hewlett Teaching Center, Rm 101


Course Schedule

  • 09/30 Overview and Introduction
  • 10/07 Marketplace and Economics
  • 10/14 Textual Advertising 1: Sponsored Search
  • 10/21 Textual Advertising 2: Contextual Advertising
  • 10/28 Display Advertising 1
  • 11/04 Display Advertising 2
  • 11/11 Targeting
  • 11/18 Recommender Systems
  • 12/02 Mobile, Video and other Emerging Formats
  • 12/09 Project Presentations

Lecture Handouts

Readings & Other Links


Assignments

Policy
  • Assignments must be done individually. It is an honor code violation to collaborate in any form on assignments.
  • Recognizing that students may face unusual circumstances and require some flexibility in the course of the quarter, each student will have a total of three free late (calendar) days to use as s/he sees fit. Once these late days are exhausted, any homework turned in late will be penalized 50% per late day.
  • All homeworks should be submitted in the slot marked "MS&E 239" in the wooden cabinet near rooms 064 and 036 in the Huang basement.
Assignments
Project

Advertising Project
The description of the advertising project is here .

Algorithmic Project
The description of the algorithmic project is here (pdf).
Short Bios

    Andrei Broder is a Yahoo! Fellow and Vice President for Computational Advertising. Previously he was an IBM Distinguished Engineer and the CTO of the Institute for Search and Text Analysis in IBM Research. From 1999 until 2002 he was Vice President for Research and Chief Scientist at the AltaVista Company. He graduated Summa cum Laude from the Technion, and obtained his M.Sc. and Ph.D. in Computer Science at Stanford, under Don Knuth. His current research interests are centered on computational advertising, web search, context-driven information supply, and randomized algorithms.

    Broder is co-winner of the Best Paper award at WWW6 (for his work on duplicate elimination of web pages) and at WWW9 (for his work on mapping the web). He has authored more than a hundred papers and was awarded thirty patents. He is a member of the National Academy of Engineering, a fellow of ACM and of IEEE, and past chair of the IEEE Technical Committee on Mathematical Foundations of Computing.
    Vanja Josifovski is Principal Research Scientist and the Lead of the Performance Advertising Group at Yahoo! Research. He joined Yahoo! Research in late 2005 and has since spent most of his time designing and building Yahoo!'s next generation online advertising platforms. As a technical lead, Vanja has contributed to rebuilding Yahoo!'s contextual advertising stack as well as the Sponsored Search Advanced Match platform. He is currently leading a team of researchers and engineers in developing Yahoo!'s next generation targeting platform. His research interest include behavioral targeting, ad selection for sponsored search, content match and graphical advertsing; search engines adaptation for ad selection; data mining and information retrieval techniques for improving ad quality; and click and query log data analysis. Previously, Vanja was a Research Staff Member at the IBM Almaden Research Center working on several projects in database runtime and optimization, federated databases, and enterprise search.

    Vanja has published over 60 peer reviewed publications and has authored over 40 patent applications. He has been a member of the organization and program committees of WWW, WSDM, SIGIR, SIGKDD, VLDB and other major conferences in the information retrieval, search and database areas. He holds a MSc degree from University of Florida and a PhD degree from Linkopings University in Sweden.


Related courses

  • CS 276 / LING 286 Information Retrieval and Web Mining ( http://www.stanford.edu/class/cs276/ )
  • MS&E 237: The Social Data Revolution: Data Mining and Electronic Business (to be offered in Spring 2011)

Acknowledgement

We acknowledge gratefully the financial support of the following companies towards student projects:
  • Google
  • Lateral Sports
  • Microsoft
  • Yahoo!

Stanford University - Introduction to Computational Advertising


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!??!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 视色视频在线 | 四虎网站最新 | 国产在线拍国产拍拍偷 | 色人阁五月天 | 日本1区| 中国美女一级毛片 | 天天射综合网站 | 福利观看| 咪咪爱在线视频 | 国产二区三区毛片 | 中文字幕 亚洲一区 | 亚洲高清在线播放 | 91成人午夜在线精品 | 精品国产九九 | 精品国产第一国产综合精品gif | 在线观看国产一区亚洲bd | 欧美日韩免费在线观看 | 兔子bt资源在线 | 天天拍夜夜添久久精品免费 | 天天拍天天操 | 曰本lesxxxx在线观看视频 | 欧美成人午夜精品一区二区 | 最新国产一区二区精品久久 | 老司机久久影院 | 四虎永久在线 | 国产精品27页 | 99久久99久久| 久久精品国产欧美日韩亚洲 | 你懂的国产| 亚洲精品久久久久中文 | 337p日本欧洲亚洲大胆艺术 | 欧美人在线一区二区三区 | 国内外成人免费视频 | 日韩在线视频www色 日韩在线视频不卡 | 国产婷婷一区二区三区 | 97久久免费视频 | 六月丁香婷婷激情国产 | 色网站视频 | 亚洲国产精品热久久 | 2022国产男人亚洲欧美天堂 | www.青草视频|