亚洲免费在线-亚洲免费在线播放-亚洲免费在线观看-亚洲免费在线观看视频-亚洲免费在线看-亚洲免费在线视频

SQL Server 2008性能故障排查(二)——CPU

系統 2093 0
原文: SQL Server 2008性能故障排查(二)——CPU

承接上一篇: SQL Server 2008性能故障排查(一)——概論

說明一下,CSDN的博客編輯非常不人性化,我在word里面都排好了版,貼上來就亂得不成樣了。建議CSDN改進這部分。也請大家關注內容不要關注排版。同時在翻譯的過程中本人也整理了一次思路,所以還似乎非常愿意翻譯,雖然有點自娛自樂,但是分享給大家也是件好事 得意

CPU 瓶頸:
CPU瓶頸可能因為某個負載所需的硬件資源不足而引起。但是過多的CPU使用通常可以通過查詢優化(特別是在一個服務器上沒有增加額外負載或不同查詢時CPU突然上升的情況)、尋找應用程序設計方面的問題和優化系統配置來減少。 在你急于買更快、更多的CPU之前,先要找出最耗費CPU資源的查詢,并且嘗試去調整那些查詢或者調整設計/系統配置因素。
性能監視器是用于監測和識別CPU是否已經成為了性能瓶頸的其中一個有用的工具。你要查看:Processor:%Processor Time計數器是否很高。如果每個CPU的該值持續在80%以上,那么意味著CPU已經成為瓶頸。
通過SQL Server你也可以通過DMVs檢查CPU是否存在瓶頸。如果在請求等待類型中發現有SOS_SCHEDULER_YIELD等待類型或者一個高值的runnable任務都可是提示可運行線程在計劃等待中。這意味著處理器上出現了CPU瓶頸。如果你有可用的數據收集器,SQLServer的等待圖表可以很容易地在任何時候查看到現有活動中的是否有CPU瓶頸。消耗CPU和SOS_SCHEDULER_YIELD等待都在報表中被納入CPU等待范疇。當你看到CPU在高比例使用時,你可以深入查找那些耗資源最多的查詢。
下面的查詢為你提供一個高級視圖去查找目前緩存批處理或者存儲過程中使用做多CPU資源的查詢。這個查詢聚合計算所有執行相同計劃句柄(Plan handle意味著他們來自相同批處理或者存儲過程)CPU消耗。如果計劃句柄超過一個語句,你就必須去深入分析以便找到在整個CPU中耗費最大的那個特定查詢:


      select top 50 

    sum(qs.total_worker_time) as total_cpu_time, 

    sum(qs.execution_count) as total_execution_count,

    count(*) as  number_of_statements, 

    qs.plan_handle 

from 

    sys.dm_exec_query_stats qs

group by qs.plan_handle

order by sum(qs.total_worker_time) desc


    

這節剩余部分將討論一下通過SQL Server和其他一些有效的方法來增強CPU以解決這些問題。

過度的查詢編譯和優化:
查詢編譯和優化是一個高CPU消耗的過程。開銷根據查詢的復雜度和優先計劃增加而增加。但是即使一個簡單的查詢也會耗用10-20毫秒的CPUT時間去解析和編譯。
為了檢查這種開銷,SQLServer緩存并重用經過編譯的查詢計劃。每次接收到來自客戶端的查詢時,SQLServer首先回去查找計劃緩存,是否已經存在一個可以重復使用的編譯計劃。如果找不到適合的計劃,SQLServer將對查詢進行分合和編譯。然后再執行。

? 對于OLTP系統。批處理的提交相對來說是小而固定的。一般情況下最佳的執行計劃不會依賴于某些值或者作為謂詞的值,因為查詢是基于鍵值的。重用執行計劃在這種類型的系統中非常重要,因為編譯的開銷往往接近甚至高于直接運行的開銷。但是,對于一個數據倉庫負載將能從專用SQL和允許查詢優化器根據不同的值選擇不同的執行計劃中得到好處。因為運行這些查詢的時間通常比編譯時間要大得多。并且查詢優化計劃經常根據查詢謂詞而改變。使用參數化查詢或者存儲過程對OLTP系統能充分重用已經編譯的執行計劃。從而降低SQLServer對CPU的耗用。你可以在數據庫或者查詢級別上使用PARAMETERIZATION FORCED數據庫選項或者查詢提示來實現參數化。更多關于該特性使用的限制,比如當你依賴于計算列的索引或者索引視圖等,請查看聯機叢書。但是,參數化最好的使用地方還是在應用程序自己內部。同時能通過參數化減少被SQL注入的機會。相關只是可以查看聯機叢書部分:
? SQL Injection (http://msdn.microsoft.com/en-us/library/ms161953.aspx)
? Using sp_executesql (http://msdn.microsoft.com/en-us/library/ms175170.aspx)


偵測問題:
在編譯過程中,SQLServer2008計算查詢的“簽名”并作為sys.dm_exec_requests和sys.dm_exec_query_stats動態視圖中的query_hash列的信息展示。這個queryhash屬性在showplan/statistics xml實體中對具有相同query_hash值的高可能行設計相同查詢文本,如果它被寫成一個query_hash參數化形式。查詢中僅是字面值不同但擁有相同的值。舉個例子:有兩個共享相同query hash的查詢,當第三個查詢有不同的query hash時。由于它執行不同的操作:
      select * from sys.objects where object_id = 100

select * from sys.objects where object_id = 101

select * from sys.objects where name = 'sysobjects'


    

query hash將在編譯階段從產生結構中被重新計算。空格將被忽略,就像在SELECT 中,顯式指定列和使用*號的query hash是不一樣的。此外,在一個查詢中使用完全限定名和另外一個使用全表名作為前綴的查詢被認為是同一個查詢,具有相同的query_hash:
      Use AdventureWorks

Go



set showplan_xml on

go



-- Assume this is run by a user whose default schema is Sales

select * from SalesOrderHeader h



select * from Sales.SalesOrderHeader h



select SalesOrderID,

	RevisionNumber,

	OrderDate,

	DueDate,

	ShipDate,

	Status,

	OnlineOrderFlag,

	SalesOrderNumber,

	PurchaseOrderNumber,

	AccountNumber,

	CustomerID,

	ContactID,

	SalesPersonID,

	TerritoryID,

	BillToAddressID,

	ShipToAddressID,

	ShipMethodID,

	CreditCardID,

	CreditCardApprovalCode,

	CurrencyRateID,

	SubTotal,

	TaxAmt,

	Freight,

	TotalDue,

	Comment,

	rowguid,

	ModifiedDate

from Sales.SalesOrderHeader h

go

set showplan_xml off

go


    


注意當query_hash值產生時,數據庫部分的完全限定名被忽略。這允許在相同實例的很多數據庫中執行查詢而不至于因為指定了數據庫前綴使得查詢不成功。
一個簡單的識別應用程序提交的特殊查詢是查看
sys.dm_exec_query_stats.query_hash列:
      select q.query_hash, 

	q.number_of_entries, 

	t.text as sample_query, 

	p.query_plan as sample_plan

from (select top 20 query_hash, 

			count(*) as number_of_entries, 

			min(sql_handle) as sample_sql_handle, 

			min(plan_handle) as sample_plan_handle

		from sys.dm_exec_query_stats

		group by query_hash

		having count(*) > 1

		order by count(*) desc) as q

	cross apply sys.dm_exec_sql_text(q.sample_sql_handle) as t

	cross apply sys.dm_exec_query_plan(q.sample_plan_handle) as p

go


    



查詢結果中額number_of_entries值在千百級別意味著參數化很優秀。如果你在XML執行計劃的<QueryPlan>標簽中查看CompileTime和CompileCPU屬性值是number_of_entries值的翻倍,你應該預測到多少編譯時間和CPU用于參數化查詢(意味著查詢只編譯了一次但是被重用了多次)。去除不必要的緩存計劃還有一個難懂的好處。釋放內存中的緩存用于其他編譯計劃,并且留下更多內存給緩存。

解決方案:
SQLServer2008同時也在執行計劃的訪問路徑(即join算法、join順序、索引選擇等等)產生一個名為“簽名”的query_plan_hash值。某些應用程序通過判斷傳入查詢的參數來評估優化器給出的不同執行計劃。在這種情況下如果你不想使得查詢參數化,你可以使用query_hash和query_plan_hash值共同決定一個具有相同query_hash值的特定的查詢結果是否擁有相同或不同的query_plan_hash值,或者訪問路徑。在之前提到的查詢中稍作修改:
      select q.query_hash, 

	q.number_of_entries, 

	q.distinct_plans,

	t.text as sample_query, 

	p.query_plan as sample_plan

from (select top 20 query_hash, 

			count(*) as number_of_entries, 

			count(distinct query_plan_hash) as distinct_plans,

			min(sql_handle) as sample_sql_handle, 

			min(plan_handle) as sample_plan_handle

		from sys.dm_exec_query_stats

		group by query_hash

		having count(*) > 1

		order by count(*) desc) as q

	cross apply sys.dm_exec_sql_text(q.sample_sql_handle) as t

	cross apply sys.dm_exec_query_plan(q.sample_plan_handle) as p

go


    


注意本查詢根據給定的query_hash值返回一個唯一的查詢計劃(query_plan_hash值)。即使唯一的計劃數量超過1個,你也可以使用sys.dm_exec_query_plan去檢索不同的執行計劃和檢驗它們對實現性能優化是否不同。
當你決定哪個查詢需要被參數化時,參數化的發生地方最好是在客戶端應用程序。具體的實現方法受到你所選擇的API。但是有一件不變的事實就是所有API都用于替代創建文本化謂詞,你可以創建一個帶有問號(?)的字符串作為參數占位符。

      -- Submitting as ad hoc query

select * from Sales.SalesOrderHeader where SalesOrderID = 100



-- Submitting as parameterized

select * from Sales.SalesOrderHeader where SalesOrderID = ?


    

你應該為你綁定參數值使用一個合適的APIs(ODBC,OLE DB,或者SQL Client)。客戶端使用sp_executesql來執行參數化:
exec sp_executesql N’select * from Sales.SalesOrderHeader where SalesOrderID = @P1’, N’@P1 int’, 100
由于查詢是參數化,能重用現有的緩存計劃。如果希望整個數據庫合理地參數化,并且你不需要控制或者修改客戶端應用程序,你同樣可以使用強制數據庫參數來實現。注意前面的警告,這會阻止優化器選擇有效的索引視圖和索引:會阻止優化器選擇有效的索引視圖和索引:會阻止優化器選擇有效的索引視圖和索引:
ALTER DATABASE AdventureWorks SET PARAMETERIZATION FORCED
如果你不能在客戶端應用程序參數化或者強制整個數據庫參數化,你依然能對某些查詢使用臨時的計劃暗示,使用OPTION(PARAMETERIZATION FORCED)。


非必要的重編譯:
當一個批處理或者一個遠程存儲調用(RPC)被提交到SQLServer時,服務器會在開始執行錢檢查查詢計劃的有效性和正確性。如果這些檢查不通過,批處理就必須重新編譯并產生一個不同的執行計劃。這種編譯叫“重編譯”。重編譯很多時候是必須的,用于確保正確性或者當服務器覺得底層數據更改時重編譯更加有效。編譯是一件耗費CPU資源的動作,因此過度的重編譯結果可能是影響系統的CPU性能。
在SQLServer2000中,當SQLServer重編譯一個存儲過程時,整個存儲過程都會被重編譯。在SQLServer2005、2008中,存儲過程的重編譯是語句級別的。當2005、2008重編譯存儲過程時。只重編譯需要編譯的語句,而不是整個存儲過程編譯。這樣能減少CPU頻寬和更少的鎖資源(比如COMPILE鎖)。重編譯一般出現在以下情況:
  • ?架構變更。
  • 統計信息變更
  • 延遲編譯
  • SET選項更改
  • 臨時表變更
  • 在存儲過程創建時使用了RECOMPILE提示。

探測:
可以使用性能監視器和SQLServer Profiler去探測過多的編譯和重編譯:
性能監視器(Performance Monitor):
SQL Statistics對象提供編譯監視計數器和SQLServer實例被發送請求的類型。你需要監控批處理的編譯和重編譯數來發現哪些制造了高CPU使用率。理想情況下,SQL Recompilations/sec和Batch Requests/sec都應該很低。除非用戶提交了特殊查詢。
主要計數器:
SQL Server:SQL Statistics:Batch Requests/sec
SQL Server:SQL Statistics:SQL Compilations/sec
SQL Server:SQL Statistics:SQL Recompilations/sec
詳細信息請參考聯機叢書中的SQL Statistics Object

SQL Server Profiler Trace:
如果性能監視器暗示重編譯次數過高,重編譯就有可能成為SQLServer耗費CPU資源的罪魁禍首。可以通過Profiler來跟蹤存儲過程重編譯情況。Profiler會連同重編譯的原因也追蹤出來:
SP:Recompile/SQL:StmtRecompile:前者是存儲過程,后者是語句的編譯。當你編譯一個存儲過程時,會產生這個存儲過程及其每個語句的相應事件。但是當存儲過程重編譯時,只有引起重編譯的語句會被重編譯。更重要的數據列是SP:Recompile事件。EventSubClass數據列對于發現重編譯的原因是非常重要的。SP:Recompile會在存儲過程中觸發一次或者重編譯時觸發一次,并且不對不重編譯操作的特殊批處理不觸發。在05、08中,更加游泳的是SQL:StmtRecomile。因為這個計數器會在所有重編譯時觸發。重要的事件列:

  • EventClass
  • EvnetSubClass
  • ObjectID(包含該語句的存儲過程ID)
  • SPID
  • StartTime
  • SqlHandle
  • TextData
更多信息請查看聯機叢書。
如果你已經有了一個跟蹤文件,可以使用下面語句查看所有重編譯事件:

      select 

    spid,

    StartTime,

    Textdata,

    EventSubclass,

    ObjectID,

    DatabaseID,

    SQLHandle 

from 

    fn_trace_gettable ( 'e:\recompiletrace.trc' , 1)

where 

    EventClass in(37,75,166)


    

其中:EventClass 37 = Sp:Recompile, 75 = CursorRecompile, 166 = SQL:StmtRecompile
你也可以更進一步組織結果,把sqlhandle和ObjectID列分組或者更多的列。要查看是否存儲過程有過多的重編譯或者因為某種原因重編譯(比如SET選項)
Showplan XML For Query Compile:
該事件會在SQLServer編譯或者重編譯一個T-SQL語句時觸發。這個事件是關于語句編譯或重編譯的信息。包括執行計劃、ObjectID。獲取這個時間對總體性能是有意義的,因為它能捕獲每一個編譯或重編譯。如果你在SQL Compilations/sec指針長期處于高值。就要注意這個事件了。可以通過這個時間查看什么語句經常重編譯。然后通過改變語句的參數來降低重編譯次數。

DMVs:
當你使用sys.dm_exec_query_optimizer_info DMV是,可以看到SQLServer在優化時間方面的一些好建議。如果你執行該DMV兩次,你將感受到在給定時間內用于優化的時間:
select * from sys.dm_exec_query_optimizer_info
counter occurrence value
---------------- -------------------- ---------------------
optimizations 81 1.0
elapsed time 81 6.4547820702944486E-2
要重點關注elapsed time,因為當優化時,這個時間通常接近用于優化的CPU時間。因為優化處理是非常耗費CPU資源的。你可以看到那些編譯和重編譯操作時最好CPU資源的。
另外一個有用的DMV是:sys.dm_exec_query_stats,主要關注列有:

? Sql_handle
? Total worker time
? Plan generation number
? Statement Start Offset
特別關注Plan_generation_num,因為是查詢被重編譯的次數。下面是一個查詢前25個重編譯最多的存儲過程信息:
      select * from sys.dm_exec_query_optimizer_info



select top 25

    sql_text.text,

    sql_handle,

    plan_generation_num,

    execution_count,

    dbid,

    objectid 

from 

    sys.dm_exec_query_stats a

    cross apply sys.dm_exec_sql_text(sql_handle) as sql_text

where 

    plan_generation_num >1

order by plan_generation_num desc


    



解決方案:
如果你發現了耗時的編譯和重編譯,可以考慮以下步驟:
? 如果重編譯的發生原因是因為SET選項,那么用SQLServer Profiler來抓去那個SET選項改變了,然后把它禁用掉(程序級別,不是數據庫級別)。最好是把這個SET操作放到數據庫連接級別,因為這能保證在連接的生命周期中有效。
? 臨時表的重編譯臨界值比實體表要低,如果因為臨時表的統計信息改變而造成重編譯,可以把臨時表改成表變量。表變量在基數上的更改不引發重編譯。但是這種方法的缺點是查詢優化器不保持跟蹤表變量的基數,因為表變量不產生統計信息和維護這些信息。這回導致執行計劃性能優化方面的不完整。你可以測試各種方法然后選擇最好的一種。
? 另外一種選項是使用KEEP PLAN查詢暗示(query hint)。這種設置使的臨時表和實體表具有相同臨界值。EventSubClass列顯示在臨時表上一個操作的統計信息改變情況。
? 為了避免統計信息的改變而重編譯(比如,如果執行計劃因為數據的統計信息改變而變成次優級別時)。可以特別執行query hint。只當這個執行計劃需要檢查正確性時才發生重編譯(比如底層結構更改或者執行計劃長時間沒有使用)。并且不依賴統計信息的改變。比如表架構的更改、或者使用了sp_recompile存儲過程去標注表。
? 關閉了自動更新統計信息能防止重編譯。因為統計信息的改變也會導致重編譯的發生。但是注意,關閉自動更新不是一個好的建議,因為查詢優化器不在對對象上的數據更改敏感,會導致執行計劃不是最優化。只是在使用了所有其他改變都無效時的不得已手段。
? 數據庫中的對象應該使用完全限定名,如dbo.table1,這樣避免重編譯和避免引起對象歧義。
? 為了避免重編譯,可以延遲編譯,不要交錯使用DML和DDL或者使用有條件的DDL比如IF語句。
? 運行DTA看看是否可以通過調整索引來改善編譯時間和執行時間。
? 檢查存儲過程是否有WITH RECOMPILE的選項。或者是否在創建存儲過程時有WITH RECOMPILE選項。在2005、2008中如果有需要,可以在語句級別加上RECOMPILE提示。在語句級別使用這個提示可以避免整個存儲過程重編譯。



低效查詢計劃:
當查詢產生一個執行計劃時,sqlser優化器會嘗試選擇響應時間最短的計劃。最快響應時間并不一定意味著最小化I/O。或者最小化CPU,而是各種資源上的一個平衡。
某些操作與生俱來就比普通操作更占用CPU資源。如Hash操作和排序操作會分別掃描各自的輸入數據。如果在類似掃描中【預讀】,那么在緩存中的所需頁面幾乎總之可用的。因此,物理I/O的等待將最小化或者完全消失。如果這些類型的操作不再受制于物理I / O時,他們傾向于出現在高CPU的消耗。 相比之下,具有很多索引查找的嵌套循環關聯如果需要跨越表的很多部分才能找到合適的數據,那么會很快成為I/O瓶頸。
查詢優化器會對最有意義的輸入,使用基于成本的各種方法來評估各種基數操作,以便找出最有效的查詢計劃。(即執行計劃中的EstimateRows和EstimateExecutions屬性)。沒有明確的基數評估,那么執行計劃是有缺陷的,并且往往這個卻是最終方案。
關于描述SQLServer優化器所使用的統計信息,請查閱:Statistics Used by the Query Optimizer in Microsoft SQL Server 2005


偵查:
低效的執行計劃相對來說比較容易發現,一個低效的執行計劃能引起CPU的消耗上升。下面的查詢是有效標識高消耗CPU的方法:
      select 

    highest_cpu_queries.plan_handle, 

    highest_cpu_queries.total_worker_time,

    q.dbid,

    q.objectid,

    q.number,

    q.encrypted,

    q.[text]

from 

    (select top 50 

        qs.plan_handle, 

        qs.total_worker_time

    from 

        sys.dm_exec_query_stats qs

    order by qs.total_worker_time desc) as highest_cpu_queries

    cross apply sys.dm_exec_sql_text(plan_handle) as q

order by highest_cpu_queries.total_worker_time desc


    

另外,也可以使用sys.dm_exec_cached_plans來過濾可能引起CPU高消耗的各種操作,比如:’%Hash Match%’、’%Sort%’等。

解決方案:
如果你發現有不高效的執行計劃,可以嘗試以下方法:
? 使用DTA優化程序,檢查是否有索引問題。
? 檢查壞基數評估
? 檢查語句的where子句是否可以更好地篩選數據。沒有嚴格限定的查詢天生就很耗資源。
? 在表上運行UPDATE STATISTICS檢查是否還存在問題。
? 檢查是否使用了構造器使得優化器不能準確評估基數?考慮是否可以改寫查詢來避免這種情況?
? 如果無法修改架構或者查詢,你可以在查詢中使用查詢提示(query hints)來限定執行計劃。計劃向導同時也對存儲過程中創建的特殊查詢有效。Hints能脫離優化器對查詢計劃的潛在更改。
? SQLServer 2008 同樣提供一個叫做【計劃凍結】的新特性。允許你凍結在執行計劃緩存中存在的特定計劃。這個選項類似于在執行計劃想到中使用USE PLAN查詢提示來定義計劃。但是,它消除了使用很長的命令來創建執行計劃向導。并且能最小化在長于據中出現的用戶錯誤。示例如下:

      DECLARE @plan_handle varbinary(64);



-- Extract the query's plan_handle.

SELECT @plan_handle = plan_handle FROM sys.dm_exec_query_stats AS qs

CROSS APPLY sys.dm_exec_sql_text(sql_handle)

WHERE text LIKE N'Some query matching criteria%';



EXECUTE sp_create_plan_guide_from_handle

    @name =  N'Sample_PG1',

    @plan_handle = @plan_handle,

    @statement_start_offset = NULL;

GO


    



查詢內并行:
當生成了執行計劃以后,SQLServer優化器會嘗試選擇響應時間最短的計劃來實現查詢。如果查詢消耗超過了并行度花銷臨界值,查詢優化器會嘗試生成一個計劃來做并行運行。并行執行計劃使用處理器的多個線程來處理查詢。最大并行度可以在服務器級別做限制,使用max degree of parallelism選項。在資源負載組級別或者每個查詢級別使用OPTION(MAXDOP)提示。實際執行的并行度(實際用于并行操作的標準)被延遲到執行時才實現。在執行之前,SQLServer會根據空閑程度決定可用于執行DOP的可用調度器。在DOP被選定以后,查詢會在該并行度中執行直到結束。并行執行會稍微耗用更多的CPU時間,但只是持續一段很短的時間。當沒有其他瓶頸時,比如物理I/O等待等,并行計劃會完全使用100%的CPU。
一個關鍵的因素是在查詢開始執行后,引導查詢使用并行計劃。但是這種情況在執行開始后還是可以變更的。比如,如果查詢在空閑發起,服務器可能會選擇使用使用4個處理器來并行執行。在這些線程開始執行,現有的連接可以提交其他查詢這也需要大量的CPU。在那時,其他不同的線程會共享可用CPU的短時間片。這將導致高查詢持續時間。
使用并行計劃運行不是一件壞事,因為它能提供更快的響應時間。但是,對給定查詢的響應時間需要權衡,應該從整體去權衡。并行查詢適合批處理,并且會根據負載來選擇運行環境。SQLServer2008對分區表查詢具有很好的擴展性,所以SQLServer2008會在并行運行時使用比舊版本更高的CPU數量。如果這不是你想要的,就應該限制甚至禁用并行性。

偵查:
并行查詢所帶來的影響可以使用以下方法來偵測:
性能監視器(Performance Monitor):
重點關注:SQL Server:SQL Statistics – Batch Requests/sec計數器和SQL Statistics Objects。由于執行并行查詢需要預估開銷不能超過設定的閾值(默認為5,可以在配置里面設定),所以如果每秒服務器要處理的批處理過多,那么將只有少量的批處理以并行方式執行。服務器通常情況下會并行運行一些小批處理,比如100個以下。
DMVs:
從服務器運行開始,可以使用以下查詢來監控:

      select 

    r.session_id,

    r.request_id,

    max(isnull(exec_context_id, 0)) as number_of_workers,

    r.sql_handle,

    r.statement_start_offset,

    r.statement_end_offset,

    r.plan_handle

from 

    sys.dm_exec_requests r

    join sys.dm_os_tasks t on r.session_id = t.session_id

    join sys.dm_exec_sessions s on r.session_id = s.session_id

where 

    s.is_user_process = 0x1

group by 

    r.session_id, r.request_id, 

    r.sql_handle, r.plan_handle, 

    r.statement_start_offset, r.statement_end_offset

having max(isnull(exec_context_id, 0)) > 0


    

在結果中,可以使用sys.dm_exec_sql_text輕易找出查詢內容,并使用sys.dm_exec_cached_plan來查看執行計劃。
同時可以查找正在并行運行的執行計劃,可以查看是否有Parallel操作符且其屬性非0的執行計劃。這些計劃可能不是以并行方式運行,但是他們如果在系統不是非常繁忙的時候,還是能按并行方式運行

      --

-- Find query plans that can run in parallel

--

select 

    p.*, 

    q.*,

    cp.plan_handle

from 

    sys.dm_exec_cached_plans cp

    cross apply sys.dm_exec_query_plan(cp.plan_handle) p

    cross apply sys.dm_exec_sql_text(cp.plan_handle) as q

where 

    cp.cacheobjtype = 'Compiled Plan' and

    p.query_plan.value('declare namespace p="http://schemas.microsoft.com/sqlserver/2004/07/showplan";

        max(//p:RelOp/@Parallel)', 'float') > 0


    

一般情況下,一個查詢的持續時間會比CPU時間更長,因為其中一些時間是花費在等待別的資源如鎖或者物理I/O上。但在一種情況下查詢的花費CPU時間會比持續時間更長,就是當查詢以并行方式運行在目前可用的多個線程上。但是注意不是所有的并行查詢都會以這種方式運行。

      select 

    qs.sql_handle, 

    qs.statement_start_offset, 

    qs.statement_end_offset, 

    q.dbid,

    q.objectid,

    q.number,

    q.encrypted,

    q.text

from 

    sys.dm_exec_query_stats qs

    cross apply sys.dm_exec_sql_text(qs.plan_handle) as q

where 

    qs.total_worker_time > qs.total_elapsed_time

SQL Trace

Look for the following signs of parallel queries, which could be either 

statements or batches that have CPU time greater than the duration.



select 

    EventClass, 

    TextData 

from 

    ::fn_trace_gettable('c:\temp\high_cpu_trace.trc', default)

where 

    EventClass in (10, 12)	-- RPC:Completed, SQL:BatchCompleted

    and CPU > Duration/1000	-- CPU is in milliseconds, Duration in 

microseconds oOr can be Showplans (un-encoded) that have Parallelism 

operators in them

select 

    EventClass, 

    TextData 

from 

    ::fn_trace_gettable('c:\temp\high_cpu_trace.trc', default)

where 

    TextData LIKE '%Parallelism%'


    



解決方法:
? 以并行計劃運行的查詢,優化器會確認是否預計花銷超過了默認閾值(5)。一些查詢會被標記,作為候選優化方案。
? 使用DTA查看是否有索引需要修改。改動索引能減少查詢開銷。
? 檢查預估執行計劃和實際執行計劃,因為預估是基于統計信息,而且基于成本。如果下面的情況出現了,就要檢查問題:

o 是否禁用了自動開啟統計,確保在執行計劃的警告部分不會出現丟失狀態等信息

o 如果預估計劃被禁用,那么在對應表上運行:UPDATE STATISTICS

o 確保查詢沒有使用到優化器無法明確預估的構造器,如多語句的表值函數或者CLR函數、表變量或者帶有比較功能的T-SQL函數(帶有參數的比較是允許的)。

o 評估語句是否能用更有效更新的方式去實現。

低效的游標使用:
在2005之前的版本只支持單獨的活動連接。正在被查詢或者等待被發送到客戶端的查詢被認為是活動的。在某些情況下,客戶端可能接收結果后,會把結果里面的語句返回SQLServer再繼續執行,這樣會引起新一輪的掛起。一個比較好的解決辦法是改變連接屬性,在服務器端使用游標。
當使用服務器端的游標時,數據庫客戶端軟件(OLE DB或者ODBC)會透明地壓縮客戶端請求到一個特殊的擴展存儲過程,如sp_cursoropen /sp_cursoffetch。這是引用一個API游標(于T-SQL游標相反)。當用戶執行查詢時,查詢文本將通過sp_cursoropen被發送到服務器。請求將從sp_cursorfetch通過服務器返回的特定行中讀取數據。為了控制數據行的返回,ODBC或者OLE DB可以使用行緩存。這避免了服務器等待客戶端讀取它返回的所有數據,這樣,服務器就可以準備接收該連接的新請求。
應用程序打開游標開始讀取時,容易由于網絡延遲造成瓶頸。特別在廣域網。在多用戶連接的快速網絡,從總體上進程請求很多游標帶來的性能問題也會變得很明顯。因為總體響應時間會因為游標定位每個結果集、預處理和類似處理。


偵測:
你可以使用下面工具來排查低效的游標應用:
性能監視器:
查看SQL Server: Cursor Manager By Type-Cursor Requests/Sec計數器。可以感受到大概游標使用情況。系統可能因為小型但每秒有幾百個提取操作而導致存在高CPU利用。沒有專門的計數器列舉提取所使用的緩存大小。
DMVs:
可以使用下面的DMV來查詢每個連接的API游標提取的緩存大小。
      select 

    cur.* 

from 

    sys.dm_exec_connections con

    cross apply sys.dm_exec_cursors(con.session_id) as cur

where

    cur.fetch_buffer_size = 1 

    and cur.properties LIKE 'API%'	-- API cursor (Transact-SQL cursors 

always 

have a fetch buffer of 1)


    

SQL Trace:
使用包含RPC:Completed事件去查找sp_cursorfetch語句。第四個參數的只是提取操作所返回的行數。具體大小根據輸出而定。可以看相應的RPC:Starting事件。

解決方法:
? 檢查是否可以使用基于集合的操作來替代游標,因為這樣幾乎一定比游標高效。
? 考慮在連接SQLServer2008是,開啟多活動結果(MARS)
? 查閱你使用的API文檔。決定如何定義一個對于游標的大的提取緩存:
o ODBC-SQL_ATTR_ROW_ARRAY_SIZE
o OLE DB –Irowset::GetNextRows 或者IRowsetLocate::GetRowsAt

下一章: I/O瓶頸


原文:
CPU Bottlenecks
A CPU bottleneck can be caused by hardware resources that are insufficient for the load. However, excessive CPU utilization can commonly be reduced by query tuning (especially if there was a sudden increase without additional load or different queries on the server), addressing any application design factors, and optimizing the system configuration. Before you rush out to buy faster and/or more processors, identify the largest consumers of CPU bandwidth and see whether you can tune those queries or adjust the design/configuration factors.
Performance Monitor is generally one of the easiest means to determine whether the server is CPU bound. You should look to see whether the Processor:% Processor Time counter is high; sustained values in excess of 80% of the processor time per CPU are generally deemed to be a bottleneck.
From within SQL Server, you can also check for CPU bottlenecks by checking the DMVs. Requests waiting with the SOS_SCHEDULER_YIELD wait type or a high number of runnable tasks can indicate that runnable threads are waiting to be scheduled and that there might be a CPU bottleneck on the processor. If you have enabled the data collector, the SQL Server Waits chart on the Server Activity report is a very easy way to monitor for CPU bottlenecks over time. Consumed CPU and SOS_SCHEDULER_YIELD waits are rolled up into the CPU Wait Category in this report, and if you do see high CPU utilization, you can drill through to find the queries that are consuming the most resources.

The following query gives you a high-level view of which currently cached batches or procedures are using the most CPU. The query aggregates the CPU consumed by all statements with the same plan_handle (meaning that they are part of the same batch or procedure). If a given plan_handle has more than one statement, you may have to drill in further to find the specific query that is the largest contributor to the overall CPU usage.

select top 50
sum(qs.total_worker_time) as total_cpu_time,
sum(qs.execution_count) as total_execution_count,
count(*) as number_of_statements,
qs.plan_handle
from
sys.dm_exec_query_stats qs
group by qs.plan_handle
order by sum(qs.total_worker_time) desc

The remainder of this section discusses some common CPU-intensive operations that can occur with SQL Server, as well as efficient methods for detecting and resolving these problems.
Excessive Query Compilation and Optimization
Query compilation and optimization is a CPU-intensive process. The cost of optimization increases as the complexity of the query and the underlying schema increases, but even a relatively simply query can take 10-20 milliseconds of CPU time to parse and compile.
To mitigate this cost, SQL Server caches and reuses compiled query plans. Each time a new query is received from the client, SQL Server first searches the plan cache (sometimes referred to as the procedure cache) to see whether there is already a compiled plan that can be reused. If a matching query plan cannot be found, SQL Server parses and compiles the incoming query before running it.
For an OLTP-type workload, the set of queries that are submitted is relatively small and static. Quite commonly the optimal query plan does not depend on the exact value or values used as predicates in the query because the lookups are based on keys. Reusing query plans in this type of workload is very important because the cost of compilation may be as high as or higher than the cost of executing the query itself. However, a data-warehousing workload may benefit greatly from using ad hoc SQL and letting the query optimizer search for the optimal plan for each set of values, because the run time for these queries is typically much longer than the compile time, and the optimal query plan is more likely to change depending on the predicates in the query. Using parameterized queries or stored procedures for OLTP-based applications substantially increases the chance of reusing a cached plan and can result in substantial reductions in SQL Server CPU consumption. You can enable parameterization at the database or query level by using the PARAMETERIZATION FORCED database option or query hint, respectively. For more information about important limitations, especially if you rely on indexes on computed columns or indexed views, see SQL Server 2008 Books Online.
However, the best place to parameterize queries is within the application itself (at design time), which also helps mitigate the risk of SQL injection by avoiding string concatenation using parameter values. For more information, see the following topics in SQL Server 2008 Books Online:
? SQL Injection (http://msdn.microsoft.com/en-us/library/ms161953.aspx)
? Using sp_executesql (http://msdn.microsoft.com/en-us/library/ms175170.aspx)
Detection
During compilation, SQL Server 2008 computes a “signature” of the query and exposes this as the query_hash column in sys.dm_exec_requests and sys.dm_exec_query_stats, and the QueryHash attribute in Showplan/Statistics XML. Entities with the same query_hash value have a high probability of referring to the same query text if it had been written in a query_hash parameterized form. Queries that vary only in literal values should have the same value. For example, the first two queries share the same query hash, while the third query has a different query hash, because it is performing a different operation.

select * from sys.objects where object_id = 100
select * from sys.objects where object_id = 101
select * from sys.objects where name = 'sysobjects'

The query hash is computed from the tree structure produced during compilation. Whitespace is ignored, as are differences in the use of explicit column lists compared to using an asterisk (*) in the SELECT list. Furthermore, it does not matter if one query uses fully qualified name and another uses just the table name as long as they both refer to the same object. All of the following should produce the same query_hash value.

Use AdventureWorks
Go

set showplan_xml on
go

-- Assume this is run by a user whose default schema is Sales
select * from SalesOrderHeader h

select * from Sales.SalesOrderHeader h

select SalesOrderID,
RevisionNumber,
OrderDate,
DueDate,
ShipDate,
Status,
OnlineOrderFlag,
SalesOrderNumber,
PurchaseOrderNumber,
AccountNumber,
CustomerID,
ContactID,
SalesPersonID,
TerritoryID,
BillToAddressID,
ShipToAddressID,
ShipMethodID,
CreditCardID,
CreditCardApprovalCode,
CurrencyRateID,
SubTotal,
TaxAmt,
Freight,
TotalDue,
Comment,
rowguid,
ModifiedDate
from Sales.SalesOrderHeader h
go
set showplan_xml off
go

Note that the database portion of the fully qualified name is ignored when the query_hash value is generated. This allows resource usage to be aggregated across all queries in systems that replicate the same schema and queries against many databases on the same instance.
An easy way to detect applications that submit lots of ad hoc queries is by grouping on the sys.dm_exec_query_stats.query_hash column as follows.

select q.query_hash,
q.number_of_entries,
t.text as sample_query,
p.query_plan as sample_plan
from (select top 20 query_hash,
count(*) as number_of_entries,
min(sql_handle) as sample_sql_handle,
min(plan_handle) as sample_plan_handle
from sys.dm_exec_query_stats
group by query_hash
having count(*) > 1
order by count(*) desc) as q
cross apply sys.dm_exec_sql_text(q.sample_sql_handle) as t
cross apply sys.dm_exec_query_plan(q.sample_plan_handle) as p
go

Queries that have a number_of_entries value in the hundreds or thousands are excellent candidates for parameterization. If you look at the CompileTime and CompileCPU attributes under the <QueryPlan> tag of the sample XML query plan and multiply those values times the number_of_entries value for that query, you can get an estimate of how much compile time and CPU you can eliminate by parameterizing the query (which means that the query is compiled once, and then it is cached and reused for subsequent executions). Eliminating these unnecessary cached plans has other intangible benefits as well, such as freeing memory to cache other compiled plans (thereby further reducing compilation overhead) and leaving more memory for the buffer cache.
Resolution
SQL Server 2008 also produces a query_plan_hash value that represents a “signature” of the query plan’s access path (that is, what join algorithm is used, the join order, index selection, and so forth). Some applications might rely on getting a different query plan based on the optimizer evaluating the specific parameter values passed to that execution of the query. If that is the case, you do not want to parameterize the queries.
You can use the query_hash and query_plan_hash values together to determine whether a set of ad hoc queries with the same query_hash value resulted in query plans with the same or different query_plan_hash values, or access path. This is done via a small modification to the earlier query.

select q.query_hash,
q.number_of_entries,
q.distinct_plans,
t.text as sample_query,
p.query_plan as sample_plan
from (select top 20 query_hash,
count(*) as number_of_entries,
count(distinct query_plan_hash) as distinct_plans,
min(sql_handle) as sample_sql_handle,
min(plan_handle) as sample_plan_handle
from sys.dm_exec_query_stats
group by query_hash
having count(*) > 1
order by count(*) desc) as q
cross apply sys.dm_exec_sql_text(q.sample_sql_handle) as t
cross apply sys.dm_exec_query_plan(q.sample_plan_handle) as p
go

Note that this new query returns a count of the number of distinct query plans (query_plan_hash values) for a given query_hash value. Rows that return a large number for number_of_entries and a distinct_plans count of 1 are good candidates for parameterization. Even if the number of distinct plans is more than one, you can use sys.dm_exec_query_plan to retrieve the different query plans and examine them to see whether the difference is important and necessary for achieving optimal performance.
After you determine which queries should be parameterized, the best place to parameterize them is the client application. The details of how you do this vary slightly depending on which client API you use, but the one consistent thing across all of the APIs is that instead of building the query string with literal predicates, you build a string with a question mark (?) as a parameter marker.

-- Submitting as ad hoc query
select * from Sales.SalesOrderHeader where SalesOrderID = 100

-- Submitting as parameterized
select * from Sales.SalesOrderHeader where SalesOrderID = ?

You should use the appropriate APIs for your technology (ODBC, OLE DB, or SQLClient) to bind a value to the parameter marker. The client driver or provider then submits the query in its parameterized form using sp_executesql.

exec sp_executesql N’select * from Sales.SalesOrderHeader where SalesOrderID = @P1’, N’@P1 int’, 100

Because the query is parameterized, it matches and reuses an existing cached plan.
If the entire workload for a given database is appropriate for parameterization and you do not have control over (or can’t change) the client application, you can also enable the forced parameterization option for the database. Note the caveats mentioned earlier; this can prevent the optimizer from matching indexed views and indexes on computed columns.

ALTER DATABASE AdventureWorks SET PARAMETERIZATION FORCED

If you can’t parameterize the client application or enable forced parameterization for the entire database, you can still create a template plan guide for specific queries with the OPTION (PARAMETERIZATION FORCED) hint. For more information about the steps required to do this, see Forced Parameterization (http://technet.microsoft.com/en-us/library/ms175037.aspx) in SQL Server 2008 Books Online.

Unnecessary Recompilation
When a batch or remote procedure call (RPC) is submitted to SQL Server, the server checks for the validity and correctness of the query plan before it begins executing. If one of these checks fails, the batch may have to be compiled again to produce a different query plan. Such compilations are known as recompilations. These recompilations are generally necessary to ensure correctness and are often performed when the server determines that there could be a more optimal query plan due to changes in underlying data. Compilations by nature are CPU intensive and hence excessive recompilations could result in a CPU-bound performance problem on the system.
In SQL Server 2000, when SQL Server recompiles a stored procedure, the entire stored procedure is recompiled, not just the statement that triggered the recompilation. In SQL Server 2008 and SQL Server 2005, the behavior is changed to statement-level recompilation of stored procedures. When SQL Server 2008 or SQL Server 2005 recompiles stored procedures, only the statement that caused the recompilation is compiled—not the entire procedure. This uses less CPU bandwidth and results in less contention on lock resources such as COMPILE locks. Recompilation can happen in response to various conditions, such as:
? Schema changes
? Statistics changes
? Deferred compilation
? SET option changes
? Temporary table changes
? Stored procedure creation with the RECOMPILE query hint or the OPTION (RECOMPILE) query hint
Detection
You can use Performance Monitor and SQL Server Profiler to detect excessive compilation and recompilation.
Performance Monitor
The SQL Statistics object provides counters to monitor compilation and the type of requests that are sent to an instance of SQL Server. You must monitor the number of query compilations and recompilations in conjunction with the number of batches received to find out whether the compilations are contributing to high CPU use. Ideally, the ratio of SQL Recompilations/sec to Batch Requests/sec should be very low, unless users are submitting ad hoc queries.
These are the key data counters:
? SQL Server: SQL Statistics: Batch Requests/sec
? SQL Server: SQL Statistics: SQL Compilations/sec
? SQL Server: SQL Statistics: SQL Recompilations/sec
For more information, see SQL Statistics Object (http://msdn.microsoft.com/en-us/library/ms190911.aspx) in SQL Server 2008 Books Online.
SQL Server Profiler Trace
If the Performance Monitor counters indicate a high number of recompilations, the recompilations could be contributing to the high CPU consumed by SQL Server. Look at the profiler trace to find the stored procedures that are being recompiled. The SQL Server Profiler trace provides that information along with the reason for the recompilation. You can use the following events to get this information.
SP:Recompile / SQL:StmtRecompile
The SP:Recompile and the SQL:StmtRecompile event classes indicate which stored procedures and statements have been recompiled. When you compile a stored procedure, one event is generated for the stored procedure and one for each statement that is compiled. However, when a stored procedure recompiles, only the statement that caused the recompilation is recompiled. Some of the more important data columns for the SP:Recompile event class are listed here. The EventSubClass data column in particular is important for determining the reason for the recompilation. SP:Recompile is triggered once for the procedure or trigger that is recompiled and is not fired for an ad hoc batch that could likely be recompiled. In SQL Server 2008 and SQL Server 2005, it is more useful to monitor SQL:StmtRecompile, because this event class is fired when any type of batch, ad hoc, stored procedure, or trigger is recompiled.
The key data columns to look at in these events are as follows.
? EventClass
? EventSubClass
? ObjectID (represents stored procedure that contains this statement)
? SPID
? StartTime
? SqlHandle
? TextData
For more information, see SQL:StmtRecompile Event Class (http://technet.microsoft.com/en-us/library/ms179294.aspx) in SQL Server 2008 Books Online.
If you have a trace file saved, you can use the following query to see all the recompilation events that were captured in the trace.

select
spid,
StartTime,
Textdata,
EventSubclass,
ObjectID,
DatabaseID,
SQLHandle
from
fn_trace_gettable ( 'e:\recompiletrace.trc' , 1)
where
EventClass in(37,75,166)
EventClass 37 = Sp:Recompile, 75 = CursorRecompile, 166 = SQL:StmtRecompile

For more information about trace events, see sp_trace_setevent (http://msdn.microsoft.com/en-us/library/ms186265.aspx) in SQL Server 2008 Books Online.
You could further group the results from this query by the SqlHandle and ObjectID columns, or by various other columns, to see whether most of the recompilations are attributed by one stored procedure or are due to some other reason (such as a SET option that has changed).
Showplan XML For Query Compile
The Showplan XML For Query Compile event class occurs when SQL Server compiles or recompiles a Transact-SQL statement. This event has information about the statement that is being compiled or recompiled. This information includes the query plan and the object ID of the procedure in question. Capturing this event has significant performance overhead, because it is captured for each compilation or recompilation. If you see a high value for the SQL Compilations/sec counter in Performance Monitor, you should monitor this event. With this information, you can see which statements are frequently recompiled. You can use this information to change the parameters of those statements. This should reduce the number of recompilations.
DMVs
When you use the sys.dm_exec_query_optimizer_info DMV, you can get a good idea of the time SQL Server spends optimizing. If you take two snapshots of this DMV, you can get a good feel for the time that is spent optimizing in the given time period.

select * from sys.dm_exec_query_optimizer_info
counter occurrence value
---------------- -------------------- ---------------------
optimizations 81 1.0
elapsed time 81 6.4547820702944486E-2

In particular, look at the elapsed time, which is the time elapsed due to optimizations. Because the elapsed time during optimization is generally close to the CPU time that is used for the optimization (because the optimization process is very CPU bound), you can get a good measure of the extent to which the compilation and recompilation time is contributing to the high CPU use.
Another DMV that is useful for capturing this information is sys.dm_exec_query_stats.
The data columns to look at are as follows:
? Sql_handle
? Total worker time
? Plan generation number
? Statement Start Offset
For more information, see sys.dm_exec_query_stats (http://msdn.microsoft.com/en-us/library/ms189741.aspx) in SQL Server 2008 Books Online.
In particular, plan_generation_num indicates the number of times the query has recompiled. The following sample query gives you the top 25 stored procedures that have been recompiled.

select * from sys.dm_exec_query_optimizer_info

select top 25
sql_text.text,
sql_handle,
plan_generation_num,
execution_count,
dbid,
objectid
from
sys.dm_exec_query_stats a
cross apply sys.dm_exec_sql_text(sql_handle) as sql_text
where
plan_generation_num >1
order by plan_generation_num desc

For more information, see Batch Compilation, Recompilation, and Plan Caching Issues in SQL Server 2005 (http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx) on Microsoft TechNet.

Resolution
If you detect excessive compilation and recompilation, consider the following options:
? If the recompilation occurred because a SET option changed, use SQL Server Profiler to determine which SET option changed. Avoid changing SET options within stored procedures. It is better to set them at the connection level. Ensure that SET options are not changed during the lifetime of the connection.
? Recompilation thresholds for temporary tables are lower than for normal tables. If the recompilations on a temporary table are due to statistics changes, you can change the temporary tables to table variables. A change in the cardinality of a table variable does not cause a recompilation. The drawback of this approach is that the query optimizer does not keep track of a table variable’s cardinality because statistics are not created or maintained on table variables. This can result in less optimal query plans. You can test the different options and choose the best one.
? Another option is to use the KEEP PLAN query hint. This sets the threshold of temporary tables to be the same as that of permanent tables. The EventSubclass column displays “Statistics Changed” for an operation on a temporary table.
? To avoid recompilations that are due to changes in statistics (for example, if the plan becomes suboptimal due to change in the data statistics), specify the KEEPFIXED PLAN query hint. With this option in effect, recompilations can only happen to ensure correctness (for example, when the underlying table structure has changed and the plan no longer applies) and not to respond to changes in statistics. For example, a recompilation can occur if the schema of a table that is referenced by a statement changes, or if a table is marked with the sp_recompile stored procedure.
? Turning off the automatic updates of statistics for indexes and statistics that are defined on a table or indexed view prevents recompilations that are due to statistics changes on that object. Note, however, that turning off the auto-stats feature by using this method is not usually a good idea. This is because the query optimizer is no longer sensitive to data changes in those objects and suboptimal query plans might result. Use this method only as a last resort after exhausting all other alternatives.
? Batches should have qualified object names (for example, dbo.Table1) to avoid recompilation and to avoid ambiguity between objects.
? To avoid recompilations that are due to deferred compilations, do not interleave DML and DDL or create the DDL from conditional constructs such as IF statements.
? Run Database Engine Tuning Advisor (DTA) to see whether any indexing changes improve the compile time and the execution time of the query.
? Check to see whether the stored procedure was created with the WITH RECOMPILE option or whether the RECOMPILE query hint was used. If a procedure was created with the WITH RECOMPILE option, in SQL Server 2008 or SQL Server 2005, you may be able to take advantage of a statement-level RECOMPILE hint if a particular statement within that procedure needs to be recompiled. Using this hint at the statement level avoids the necessity of recompiling the whole procedure each time it executes, while at the same time allowing the individual statement to be compiled. For more information about the RECOMPILE hint, see Query Hints (Transact-SQL) (http://msdn.microsoft.com/en-us/library/ms181714.aspx) in SQL Server 2008 Books Online.
Inefficient Query Plan
When generating an execution plan for a query, the SQL Server optimizer attempts to choose a plan that provides the fastest response time for that query. Note that the fastest response time doesn’t necessarily mean minimizing the amount of I/O that is used, nor does it necessarily mean using the least amount of CPU—it is a balance of the various resources.
Certain types of operators are more CPU-intensive than others. By their nature, the Hash operator and Sort operator scan through their respective input data. If read-ahead (prefetch) is used during such a scan, the pages are almost always available in the buffer cache before the page is needed by the operator. Thus, waits for physical I/O are minimized or eliminated. If these types of operations are no longer constrained by physical I/O, they tend to manifest themselves in high CPU consumption. By contrast, nested loop joins have many index lookups and can quickly become I/O bound if the index lookups are traversing to many different parts of the table so that the pages can’t fit into the buffer cache.
The most significant input the optimizer uses in evaluating the cost of various alternative query plans is the cardinality estimates for each operator, which you can see in the Showplan (EstimateRows and EstimateExecutions attributes). Without accurate cardinality estimates, the primary input used in optimization is flawed, and many times so is the final plan.
For an excellent white paper that describes in detail how the SQL Server optimizer uses statistics, see Statistics Used by the Query Optimizer in Microsoft SQL Server 2005 (http://www.microsoft.com/technet/prodtechnol/sql/2005/qrystats.mspx). The white paper discusses how the optimizer uses statistics, best practices for maintaining up-to-date statistics, and some common query design issues that can prevent accurate estimate cardinality and thus cause inefficient query plans.

Detection
Inefficient query plans are usually detected comparatively. An inefficient query plan can cause increased CPU consumption.
The following query against sys.dm_exec_query_stats is an efficient way to determine which query is using the most cumulative CPU.

select
highest_cpu_queries.plan_handle,
highest_cpu_queries.total_worker_time,
q.dbid,
q.objectid,
q.number,
q.encrypted,
q.[text]
from
(select top 50
qs.plan_handle,
qs.total_worker_time
from
sys.dm_exec_query_stats qs
order by qs.total_worker_time desc) as highest_cpu_queries
cross apply sys.dm_exec_sql_text(plan_handle) as q
order by highest_cpu_queries.total_worker_time desc

Alternatively, you can query against sys.dm_exec_cached_plans by using filters for various operators that may be CPU intensive, such as ‘%Hash Match%’, ‘%Sort%’ to look for suspects.
Resolution
Consider the following options if you detect inefficient query plans:
? Tune the query with the Database Engine Tuning Advisor to see whether it produces any index recommendations.
? Check for issues with bad cardinality estimates.
? Are the queries written so that they use the most restrictive WHERE clause that is applicable? Unrestricted queries are resource intensive by their very nature.
? Run UPDATE STATISTICS on the tables involved in the query and check to see whether the problem persists.
? Does the query use constructs for which the optimizer is unable to accurately estimate cardinality? Consider whether the query can be modified in a way so that the issue can be avoided.
? If it is not possible to modify the schema or the query, you can use the plan guide feature to specify query hints for queries that match certain text criteria. Plan guides can be created for ad hoc queries as well as queries inside a stored procedure. Hints such as OPTION (OPTIMIZE FOR) enable you to impact the cardinality estimates while leaving the optimizer its full array of potential plans. Other hints such as OPTION (FORCE ORDER) or OPTION (USE PLAN) provide you with varying degrees of control over the query plan. SQL Server 2008 offers full DML support for plan guides, which means that that they can be created for SELECT, INSERT, UPDATE, DELETE or MERGE statements.
? SQL Server 2008 also offers a new feature called plan freezing that allows you to freeze a plan exactly as it exists in the plan cache. This option is similar to creating a plan guide with the USE PLAN query hint specified. However, it eliminates the need to execute lengthy commands as required when creating a plan guides. It also minimizes the user errors with go along with those lengthy commands. For example, the simple two-statement batch presented below is all that’s needed to freeze a plan for a query that matches the specified text criteria.

DECLARE @plan_handle varbinary(64);

-- Extract the query's plan_handle.
SELECT @plan_handle = plan_handle FROM sys.dm_exec_query_stats AS qs
CROSS APPLY sys.dm_exec_sql_text(sql_handle)
WHERE text LIKE N'Some query matching criteria%';

EXECUTE sp_create_plan_guide_from_handle
@name = N'Sample_PG1',
@plan_handle = @plan_handle,
@statement_start_offset = NULL;
GO

This statement creates a plan guide (Sample_PG1) in the sys.plan_guides table.
Intraquery Parallelism
When generating an execution plan for a query, the SQL Server optimizer attempts to choose the plan that provides the fastest response time for that query. If the query’s cost exceeds the value specified in the cost threshold for parallelism option and parallelism has not been disabled, the optimizer attempts to generate a plan that can be run in parallel. A parallel query plan uses multiple threads to process the query, with each thread distributed across the available CPUs and concurrently utilizing CPU time from each processor. The maximum degree of parallelism can be limited server-wide by using the max degree of parallelism option, on a resource workload group level, or on a per-query level by using the OPTION (MAXDOP) hint.
The decision on the actual degree of parallelism (DOP) used for execution—a measure of how many threads will do a given operation in parallel—is deferred until execution time. Before executing the query, SQL Server determines how many schedulers are underutilized and chooses a DOP for the query that fully utilizes the remaining schedulers. After a DOP is chosen, the query runs with the chosen degree of parallelism until completion. A parallel query typically uses a similar but slightly higher amount of CPU time as compared to the corresponding serial execution plan, but it does so in a shorter amount of time. As long as there are no other bottlenecks, such as waits for physical I/O, parallel plans generally should use 100% of the CPU across all of the processors.
One key factor (how idle the system is) that led to running a parallel plan can change after the query starts executing. This can change, however, after the query starts executing. For example, if a query comes in during an idle time, the server might choose to run with a parallel plan and use a DOP of four and spawn up threads on four different processors. After those threads start executing, existing connections can submit other queries that also require a lot of CPU. At that point, all the different threads will share short time slices of the available CPU, resulting in higher query duration.
Running with a parallel plan is not inherently bad and should provide the fastest response time for that query. However, the response time for a given query must be weighed against the overall throughput and responsiveness of the rest of the queries on the system. Parallel queries are generally best suited to batch processing and decision support workloads and might not be useful in a transaction processing environment.
SQL Server 2008 implemented significant scalability improvements to fully utilize available hardware with partitioned table queries. Consequently, SQL Server 2008 might use higher amounts of CPU during parallel query execution than older versions. If this is not desired, you should limit or disable parallelism.

Detection
Intraquery parallelism problems can be detected by using the following methods.
Performance Monitor
For more information, see the SQL Server:SQL Statistics – Batch Requests/sec counter and SQL Statistics Object (http://msdn.microsoft.com/en-us/library/ms190911.aspx) in SQL Server 2008 Books Online.
Because a query must have an estimated cost that exceeds the cost threshold for the parallelism configuration setting (which defaults to 5) before it is considered for a parallel plan, the more batches a server is processing per second, the less likely it is that the batches are running with parallel plans. Servers that are running many parallel queries normally have small batch requests per second (for example, values less than 100).
DMVs
From a running server, you can determine whether any active requests are running in parallel for a given session by using the following query.

select
r.session_id,
r.request_id,
max(isnull(exec_context_id, 0)) as number_of_workers,
r.sql_handle,
r.statement_start_offset,
r.statement_end_offset,
r.plan_handle
from
sys.dm_exec_requests r
join sys.dm_os_tasks t on r.session_id = t.session_id
join sys.dm_exec_sessions s on r.session_id = s.session_id
where
s.is_user_process = 0x1
group by
r.session_id, r.request_id,
r.sql_handle, r.plan_handle,
r.statement_start_offset, r.statement_end_offset
having max(isnull(exec_context_id, 0)) > 0


With this information, you can easily retrieve the text of the query by using sys.dm_exec_sql_text, and you can retrieve the plan by using sys.dm_exec_cached_plan.
You can also search for plans that are eligible to run in parallel. To do this, search the cached plans to see whether a relational operator has its Parallel attribute as a nonzero value. These plans might not run in parallel, but they can to do so if the system is not too busy.

--
-- Find query plans that can run in parallel
--
select
p.*,
q.*,
cp.plan_handle
from
sys.dm_exec_cached_plans cp
cross apply sys.dm_exec_query_plan(cp.plan_handle) p
cross apply sys.dm_exec_sql_text(cp.plan_handle) as q
where
cp.cacheobjtype = 'Compiled Plan' and
p.query_plan.value('declare namespace p="http://schemas.microsoft.com/sqlserver/2004/07/showplan";
max(//p:RelOp/@Parallel)', 'float') > 0

In general, the duration of a query is longer than the amount of CPU time, because some of the time was spent waiting on resources such as a lock or physical I/O. The only scenario where a query can use more CPU time than the elapsed duration is when the query runs with a parallel plan such that multiple threads concurrently use CPU. Note that not all parallel queries demonstrate this behavior (where the CPU time is greater than the duration).

select
qs.sql_handle,
qs.statement_start_offset,
qs.statement_end_offset,
q.dbid,
q.objectid,
q.number,
q.encrypted,
q.text
from
sys.dm_exec_query_stats qs
cross apply sys.dm_exec_sql_text(qs.plan_handle) as q
where
qs.total_worker_time > qs.total_elapsed_time
SQL Trace
Look for the following signs of parallel queries, which could be either
statements or batches that have CPU time greater than the duration.

select
EventClass,
TextData
from
::fn_trace_gettable('c:\temp\high_cpu_trace.trc', default)
where
EventClass in (10, 12) -- RPC:Completed, SQL:BatchCompleted
and CPU > Duration/1000 -- CPU is in milliseconds, Duration in
microseconds oOr can be Showplans (un-encoded) that have Parallelism
operators in them
select
EventClass,
TextData
from
::fn_trace_gettable('c:\temp\high_cpu_trace.trc', default)
where
TextData LIKE '%Parallelism%'


Resolution
? Any query that runs with a parallel plan is one that the optimizer identifies as expensive enough to exceed the cost threshold of parallelism, which defaults to 5 (roughly a 5-second execution time on a reference computer). Any queries identified through the previous methods are candidates for further tuning.
? Use the Database Engine Tuning Advisor to see whether any indexing changes, changes to indexed views, or partitioning changes could reduce the cost of the query.
? Check for significant differences in the actual versus the estimated cardinality, because the cardinality estimates are the primary factor in estimating the cost of the query. If any significant differences are found:
o If the auto create statistics database option is disabled, make sure that there are no MISSING STATS entries in the Warnings column of the Showplan output.
o Try running UPDATE STATISTICS on the tables where the cardinality estimates are off.
o Verify that the query doesn’t use a query construct that the optimizer can’t accurately estimate, such as multistatement table-valued functions or CLR functions, table variables, or comparisons with a Transact-SQL variable (comparisons with a parameter are okay).
o Evaluate whether the query could be written in a more efficient fashion using different Transact-SQL statements or expressions.
Poor Cursor Usage
Versions of SQL Server prior to SQL Server 2005 only supported a single active common per connection. A query that was executing or had results pending to send to the client was considered active. In some situations, the client application might need to read through the results and submit other queries to SQL Server based on the row just read from the result set. This could not be done with a default result set, because it could have other pending results. A common solution was to change the connection properties to use a server-side cursor.
When a server-side cursor is used, the database client software (the OLE DB provider or ODBC driver) transparently encapsulates client requests inside special extended stored procedures, such as sp_cursoropen or sp_cursorfetch. This is referred to as an API cursor (as opposed to a Transact-SQL cursor). When the user executes the query, the query text is sent to the server via sp_cursoropen; requests to read from the result set result in a sp_cursorfetch instructing the server to send back only a certain number of rows. By controlling the number of rows that are fetched, the ODBC driver or OLE DB provider can cache the row or rows. This prevents a situation where the server is waiting for the client to read all the rows it has sent. Thus, the server is ready to accept a new request on that connection.

Applications that open cursors and fetch one row (or a small number of rows) at a time can easily become bottlenecked by the network latency, especially on a wide area network (WAN). On a fast network with many different user connections, the overhead required to process many cursor requests can become significant. Because of the overhead associated with repositioning the cursor to the appropriate location in the result set, per-request processing overhead, and similar processing, it is more efficient for the server to process a single request that returns 100 rows than to process 100 separate requests that return the same 100 rows one row at a time.
Detection
You can use the following tools to troubleshoot poor cursor usage.
Performance Monitor
By looking at the SQL Server:Cursor Manager By Type – Cursor Requests/Sec counter, you can get a general feel for how many cursors are being used on the system. Systems that have high CPU utilization because of small fetch sizes typically have hundreds of cursor requests per second. There are no specific counters that list the fetch buffer size.
DMVs
You can use following query to determine the connections with API cursors (as opposed to Transact-SQL cursors) that are using a fetch buffer size of one row. It is much more efficient to use a larger fetch buffer, such as 100 rows.

select
cur.*
from
sys.dm_exec_connections con
cross apply sys.dm_exec_cursors(con.session_id) as cur
where
cur.fetch_buffer_size = 1
and cur.properties LIKE 'API%' -- API cursor (Transact-SQL cursors
always
have a fetch buffer of 1)

SQL Trace
Use a trace that includes the RPC:Completed event class search for sp_cursorfetch statements. The value of the fourth parameter is the number of rows returned by the fetch. The maximum number of rows that are requested to be returned is specified as an input parameter in the corresponding RPC:Starting event class.

Resolution
? Determine whether cursors are the most appropriate means to accomplish the processing or whether a set-based operation, which is generally more efficient, is possible.
? Consider enabling multiple active results (MARS) when connecting to SQL Server 2008.
? Consult the appropriate documentation for your specific API to determine how to specify a larger fetch buffer size for the cursor:
o ODBC - SQL_ATTR_ROW_ARRAY_SIZE
o OLE DB – IRowset::GetNextRows or IRowsetLocate::GetRowsAt


SQL Server 2008性能故障排查(二)——CPU


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 九九精品成人免费国产片 | 久久久精品免费视频 | 久草在线视频首页 | 夜夜操女人 | 波多野结衣久久 | 99热这里只有精品国产在热久久 | 成人www视频 | 久久夜色撩人精品国产 | 男人的天堂久久精品激情 | 五月婷婷国产 | 国产一级精品视频 | 99re这里只有精品在线观看 | 国产成人精品一区二区三在线观看 | 日本特黄一级午夜剧场毛片 | 特级无码a级毛片特黄 | 最新69成人精品毛片 | 国产成人一区二区三区精品久久 | 日韩草逼| 2018天天操天天干 | 国产精品午夜久久久久久99热 | 亚洲综合成人网在线观看 | 青青国产成人精品视频 | 久久99精品国产免费观看 | 欧美一区二区三区视频在线 | 人人操天天射 | 一区二区三区免费在线 | 99久久精品国产一区二区三区 | 国产成人综合日韩精品婷婷九月 | 热综合一本伊人久久精品 | 99视频精品国在线视频艾草 | 一区二区网站 | 国产欧美精品三区 | 免费看欧美毛片大片免费看 | 国产成人经典三级在线观看 | 久热草在线 | 国产成人一区二区三区在线视频 | 一级毛片高清 | 欧美专区综合 | 成人综合久久精品色婷婷 | 天海翼一区二区三区高清视频 | 久久精品视 |